Download JEE Main 2023 Question Paper (10 Apr - Shift 2) Mathematics
Important Instructions
- Section-A : Attempt all questions.
- Section-B : Do any 5 questions out of 10 Questions.
- Section-A (01 – 20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.
- Section-B (1 – 10) contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. Each question carries +4 marks for correct answer and –1 mark for wrong answer
SECTION - A
(One Option Correct Type)
This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct
- If the points $P$ and $Q$ are respectively the circumcenter and the orthocentre of a $∆ABC$, then $\vec{PA}$+$\vec{PB}$+$\vec{PC}$ is equal to
- $\vec{QP}$
- 2$\vec{PQ}$
- $\vec{PQ}$
- 2$\vec{QP}$
- If $S_n$ = 4 + 11 + 21 + 34 + 50 + ……… to $n$ terms, then $\frac{1}{60}(S_{29} – S_{9})$ is equal to
- 220
- 226
- 227
- 223
- If $A$=$\frac{1}{5!6!7!}\begin{equation*}\begin{bmatrix}5! & 6! & 7! \\ 6! & 7! & 8! \\ 7! & 8! & 9! \end{bmatrix}\end{equation*}$, then $|adj(adj(2A))|$ is equal to
- $2^8$
- $2^{16}$
- $2^{12}$
- $2^{20}$
- The statement ~ [p ∨ (~ (p∧q))] is equivalent to
- ~(p∧q)
- ~(p∨q)
- (~(p∧q))∧q
- (p∧q)∧(~p)
- Eight persons are to be transported from city A to city B in three cars of different makes. If each car can accommodate at most three persons, then the number of ways, in which they can be transported, is
- 1120
- 1680
- 3360
- 560
- Let a circle of radius 4 be concentric to the ellipse $15x^2$+ $19y^2$
= 285. Then the common tangents are
inclined to the minor axis of the ellipse at the angle
- $\frac{\pi}{3}$
- $\frac{\pi}{12}$
- $\frac{\pi}{6}$
- $\frac{\pi}{4}$
- Let the number $(22)^{2022}$ + $(2022)^{22}$ leave the remainder $\alpha$ when divided by 3 and $\beta$ when divided by 7 . Then $(\alpha^2 + \beta^2)$ is equal to :
- 5
- 20
- 10
- 13
- Let $S$=$\left\{z=x+iy:\frac{2z-3i}{4z+2i} \text{is real number}\right\}$. Then which of the following is NOT correct ?
- $(x, y)$=$\left(0, -\frac{1}{2}\right)$
- $y$+$x^2$+$y^2$$\neq -\frac{1}{4}$
- $x=0$
- $y \in \left(-\infty, -\frac{1}{2}\right)\cup\left(-\frac{1}{2}, \infty\right)$
- For $\alpha$, $\beta$, $\gamma$, $\delta \in N$, if $\int \left(\left(\frac{x}{e}^{2x}\right)+\left(\frac{e}{x}^{2x}\right)\right)\log_exdx$=$\frac{1}{\alpha}\left(\frac{x}{e}\right)^{\beta x}$$-\frac{1}{\gamma}\left(\frac{e}{x}\right)^{\delta x}$+$C$, where $e$=$\sum \limits_{n=0}^{\infty}\frac{1}{n!}$ and $C$ is constant of integration, then $\alpha$ + 2$\beta$ + 3$\gamma$ – 4$\delta$ is equal to
- 4
- -4
- -8
- 1
- If the coefficients of $x$ and $x^2$in $(1 + x)^p(1–x)^q$ are 4 and –5 respectively, then $2p + 3q$ is equal to
- 69
- 60
- 66
- 63
- Let $A$ = {2, 3, 4} and $B$ = {8, 9, 12}. Then the number of elements in the relation $R$ = {($(a_1, b_1)$, $(a_2 , b_2)$) $\in (A × B, A × B)$ : $a_1$ divides $b_2$ and $a_2$ divides $b_1$} is :
- 18
- 36
- 12
- 24
- Let $\mu$ be the mean and $\sigma$ be the standard deviation of the distribution
$x_i$ 0 1 2 3 4 5 $f_i$ $k+2$ $2k$ $k^2-1$ $k^2-1$ $k^2+1$ $k-3$
where $\sum f_i$=62. If $[x]$ denotes the greatest integer $\leq x$, then $[µ^2 + \sigma^2]$ is equal to
- 8
- 7
- 6
- 9
- Let $\vec{a}$=$2\hat{i}$+$7\hat{j}$$-\hat{k}$, $\vec{b}$=$3\hat{i}$+$5\hat{k}$ and $\vec{c}$=$\hat{i}-\hat{j}+2\hat{k}$. Let $\vec{d}$ be a vector which is perpendicular to both $\vec{a}$ and $\vec{b}$ and $\vec{c}•\vec{d}$=12. Then $(-\hat{i}+\hat{j}-\hat{k})•(\vec{c}×\vec{d})$ is equal to
- 48
- 42
- 44
- 24
- Let a die be rolled $n$ times. Let the probability of getting odd numbers seven times be equal to the probability of getting odd numbers nine times. If the probability of getting even numbers twice is $\frac{k}{2^{15}}$, then $k$ is equal to :
- 90
- B
- 60
- 15
- Let $A$ be the point (1, 2) and $B$ be any point on the curve $x^2$ + $y^2$ = 16. If the centre of the locus of the
point $P$, which divides the line segment $AB$ in the ratio 3 : 2 is the point $C (\alpha, \beta)$, then the length of the line segment $AC$ is
- $\frac{4\sqrt{5}}{5}$
- $\frac{2\sqrt{5}}{5}$
- $\frac{3\sqrt{5}}{5}$
- $\frac{6\sqrt{5}}{5}$
- Let $S$=$\left\{x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right):9^{1-\tan^2x}+9^{\tan^2x}=10\right\}$ and $\beta$=$\sum \limits_{x \in S}\tan^2\frac{x}{3}$, then $\frac{1}{6}(\beta-14)^2$ is equal to
- 8
- 16
- 32
- 64
- Let $g(x)$=$f(x)$+$f(1-x)$ and $f''(x)>0$, $x \in (0, 1)$, If $g $is decreasing in the interval $(0, \alpha)$ and increasing in the interval $(\alpha, 1)$ then $\tan^{-1}(2\alpha)$+$\tan^{-1}\left(\frac{1}{\alpha}\right)$+$\tan^{-1}\left(\frac{\alpha+1}{\alpha}\right)$ is equal to
- $\frac{3\pi}{4}$
- $\frac{3\pi}{2}$
- $\pi$
- $\frac{5\pi}{4}$
- Let the line $\frac{x}{1}$=$\frac{6-y}{2}$=$\frac{z+8}{5}$ intersect the lines $\frac{x-5}{4}$=$\frac{y-7}{3}$=$\frac{z+2}{1}$ and $\frac{x+3}{6}$=$\frac{3-y}{3}$=$\frac{z-6}{1}$ at the points $A$ and $B$ respectively. Then the distance of the mid-point of the line segment $AB$ from the plane
$2x $$– 2y$ + $z$ = 14 is :
- 3
- $\frac{10}{3}$
- 4
- $\frac{11}{3}$
- Let $f$ be continuous function satisfying $\int \limits_{0}^{t^2}(f(x)+x^2)dx$=$\frac{4}{3}t^3$, $\forall t>0$. Then $f\left(\frac{\pi^2}{4}\right)$ is equal to
- $\pi\left(1-\frac{\pi^3}{16}\right)$
- $\pi^2\left(1-\frac{\pi^2}{16}\right)$
- $-\pi^2\left(1+\frac{\pi^2}{16}\right)$
- $-\pi\left(1+\frac{\pi^3}{16}\right)$
- Let the image of the point $P(1, 2, 6)$ in the plane passing through the points $A(1, 2, 0)$, $B(1, 4, 1)$ and
$C (0, 5,1)$ be $Q (\alpha, \beta, \gamma)$. Then $(\alpha^2 + \beta^2 + \gamma^2)$ is equal to
- 65
- 70
- 62
- 76
SECTION - B
(Numerical Answer Type)
This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.
- In the figure, $\theta_1$+$\theta_2$=$\frac{\pi}{2}$ and $\sqrt{3}(BE)$=$4(AB)$. If the area of $\Delta CAB$ is $2\sqrt{3}-3 unit^2$, when $\frac{\theta_2}{\theta_1}$ is the largest, then the perimeter (in unit) of $\Delta CED$ is equal to ________.

- Let the foot of perpendicular from the point $A (4,3,1)$ on the plane $P$ : $x – y$ + $2z$ + 3 = 0 be $N$. If $B(5, \alpha, \beta), \alpha, \beta \in Z$ is a point on plane $P$ such that the area of the triangle $ABN$ is $3\sqrt{2}$, then $\alpha^2$+$\beta^2$ +$\alpha \beta$ is equal to ______.
- Let $S$ be the set of values of $\lambda$, for which the system of equations $6\lambdax$$ – 3y$ + $3z$ = $4\lambda^2$, $2x$ + $6\lambda y$ + $4z$ = 1, $3x$ + $2y$ + $3\lambda z$ = $\lambda$ has no solution. Then $12\sum \limits_{\lambda \in S}|\lambda|$ is equal to........
- Let the tangent at any point $P$ on a curve passing through the points (1,1) and $\left(\frac{1}{10}, 100\right)$, intersect positive $x-$axis and $y-$axis at the point $A$ and $B$ respectively. If $PA$ : $PB$ = $1 : k$ and $y = y(x)$ is the solution of the differential equation $e^{\frac{dy}{dx}}$=$kx$+$\frac{k}{2}$, $y(0)=k$, then $4y(1)-5\log_e3$ is equal to ........
- Let the equation of two adjacent sides of a parallelogram $ABCD$ be $2x – 3y$ = –23 and $5x$ + $4y$ = 23. If the equation of its one diagonal $AC$ is $3x$ + $7y$ = 23 and the distance of $A$ from the other diagonal is $d$, then $50 d^2$ is equal to _______.
- The sum of all the four-digit numbers that can be formed using all the digits 2, 1, 2, 3 is equal to _____.
- If the domain of the function $f(x)$ =$\sec^{-1}\left(\frac{2x}{5x+3}\right)$ is $[\alpha, \beta) \cup (\gamma, \delta]$, then $|3\alpha+10(\beta+\gamma)+21\delta|$ is equal to ...........
- Let the quadratic curve passing through the point (–1, 0) and touching the line $y = x$ at (1,1) be $y = f(x)$. Then the $x-$intercept of the normal to the curve at the point $(\alpha, \alpha + 1)$ in the first quadrant is ______.
- Suppose $a_1$, $a_2$, 2, $a_3$, $a_4$, be in an arithmetic co-geometric progression. If the common ratio of the corresponding geometric progression is 2 and the sum of all 5 terms of the arithmetic co-geometric progression is $\frac{49}{2}$, then $a_4$ is equal to ............
- If the area of the region {$x, y$ : $|x^2 – 2| \leq y \leq x$} is $A$, then 6$A$ + $16\sqrt{2}$ is equal to ______.
Download as PDF
Comments
Post a Comment