Download JEE Main 2023 Question Paper (01 Feb - Shift 1) Mathematics
Important Instructions
- Section-A : Attempt all questions.
- Section-B : Do any 5 questions out of 10 Questions.
- Section-A (01 – 20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.
- Section-B (1 – 10) contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. Each question carries +4 marks for correct answer and –1 mark for wrong answer
SECTION - A
(One Option Correct Type)
This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct
- The area enclosed by the closed curve $C$ given by the differential equation $\frac{dy}{dx}$+$\frac{x+a}{y-2}$=0, $y(1)=0$ is $4\pi$. Let $P$ and $Q$ be the points of intersection of the curve $C$ and the $y-$axis. If normals at $P$ and and $Q$ on the curve $C$ intersect $x-$axis at points $R$ and $S$ respectively, then the length of the line segment RS is
- $2\sqrt{3}$
- 2
- $\frac{4\sqrt{3}}{3}$
- $\frac{2\sqrt{3}}{3}$
- The mean and variance of 5 observations are 5 and 8 respectively. If 3 observations are 1, 3, 5, then the sum of cubes of the remaining two observations is
- 1456
- 1792
- 1072
- 1216
- Let $S$ be the set of all solutions of the equation $\cos^{-1}2x$$-2\cos^{-1}(\sqrt{1-x^2})$=$\pi$. $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$. Then $\sum \limits_{x \in S}2\sin^{-1}(x^2-1)$ is equal to
- $\pi-\sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$
- $\frac{-2\pi}{3}$
- 0
- $\pi-\sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$
- Let $R$ be a relation on $R$ , given by $R$={$(a, b):3a-3b+\sqrt{7}$ is an irrational number}. Then $R$ is
- reflexive but neither symmetric nor transitive
- reflexive and transitive but not symmetric
- reflexive and symmetric but not transitive
- an equivalence relation
- The negation of the expression $q∨((~q)∧p)$ is equivalent to
- $(~p)∧(~q)$
- $(~p)∨q$
- $(~p)∨(~q)$
- $p∧(~q)$
- In a binomial distribution $B(n, p)$, the sum and the product of the mean and the variance are 5 and 6 respectively, then $6(n+p+q)$ is equal to
- 52
- 53
- 50
- 51
- For a triangle $ABC$, the value of $cos2A$+$cos2B$+$cos2C$ is least. If its inradius is 3 and incentre is $M$, then which of the following is NOT correct?
- $sin2A$+$sin2B$+$sin2C$=$sinA$+$sinB$+$sinC$
- perimeter of $∆ABC$ is $18\sqrt{3}$
- $\vec{MA}.\vec{MB}$=$-18$
- area of $∆ABC$ is $\frac{27\sqrt{3}}{2}$
- If $y$=$y(x)$ is the solution curve of the differential equation $\frac{dy}{dx}+y\tan x=x \sec x$, $0 \leq x \leq \frac{\pi}{3}$, $y(0)=1$, then $y\left(\frac{\pi}{6}\right)$ is equal to
- $\frac{\pi}{12}$+$\frac{\sqrt{3}}{2}\log_e\left(\frac{2}{e\sqrt{3}}\right)$
- $\frac{\pi}{12}$+$\frac{\sqrt{3}}{2}\log_e\left(\frac{2\sqrt{3}}{e}\right)$
- $\frac{\pi}{12}$$-\frac{\sqrt{3}}{2}\log_e\left(\frac{2\sqrt{3}}{e}\right)$
- $\frac{\pi}{12}$$-\frac{\sqrt{3}}{2}\log_e\left(\frac{2}{e\sqrt{3}}\right)$
- If the center and radius of the circle $\left|\frac{z-2}{z-3}\right|$=2 are respectively $(\alpha, \beta)$ and $\gamma$, then $3(\alpha, \beta, \gamma)$ is equal to
- 11
- 9
- 10
- 12
- If the orthocentre of the triangle, whose vertices are (1, 2), (2, 3) and (3,1) is $(\alpha, \beta)$, then the quadratic equation whose roots are $\alpha+4\beta$ and $4\alpha+\beta$, is
- $x^2-$$19x$+90=0
- $x^2-$$19x$+80=0
- $x^2-$$20x$+99=0
- $x^2-$$22x$+120=0
- Let $f(x)$=$2x$+$\tan^{-1}x$ and $g(x)$=$\log_e(\sqrt{1+x^2}+x)$, $x \in [0, 3]$. Then
- there exists $\hat{x} \in [0, 3]$ such that $f'(\hat{x})$ < $g'(\hat{x})$
- min $f'(x)$=1+max $g'(x)$
- there exist $0 < x_1 < x_2 < x_3$ such that $f(x) < g(x)$, $\forall x \in (x_1,x_2)$
- max $f(x)$>max $g(x)$
- Let $S$=$\left\{x:x \in R and (\sqrt{3}+\sqrt{2})^{x^2-4}+(\sqrt{3}-\sqrt{2})^{x^2-4}=10\right\}$. Then $n(S)$ is equal to
- 4
- 2
- 6
- 0
- Let $S$ denote the set of all real values of $\lambda$ such that the system of equations
$\lambda x$+$y$+$z$=1
$x$+$\lambda y$+$z$=1
$x$+$y$+$\lambda z$=1
is in consistent, then $\sum \limits_{\lambda \in S}\left(|\lambda|^2+|\lambda|\right)$ is equal to- 6
- 4
- 2
- 12
- The sum to 10 terms of the series
$\frac{1}{1+1^2+1^4}$+$\frac{1}{2+2^2+2^4}$+$\frac{1}{3+3^2+3^4}$+........ is- $\frac{56}{111}$
- $\frac{55}{111}$
- $\frac{59}{111}$
- $\frac{58}{111}$
- The combined equation of the two lines $ax$+$by$+$c$=0 and $a'x$+$b'y$+$c'$=0 can be written as $(ax+by+c)$$(a'x+b'y+c')$=0. The equation of the angle bisectors of the lines represented by the equation $2x^2$+$xy-$$3y^2$=0 is
- $x^2$$-y^2$$-10xy$=0
- $3x^2$+$5xy$+$2y^2$=0
- $3x^2$+$xy$$-2y^2$=0
- $x^2-$$y^2$+$10xy$=0
- Let $\begin{\equation*} f(x)=\begin{vmatrix} 1+\sin^2 x & \cos^2 x & \sin 2x \\ \sin^2 x & 1+\cos^2 x & \sin 2x \\ \sin^2 x & \cos^2 x \\ 1+\sin 2x \end{vmatrix}\end{equation*}$, $x \in $\left[\frac{\pi}{6}, \frac{\pi}{3}$. If $\alpha$ and $\beta$ respectively are the maximum
and the minimum values of $f$, then
- $\alpha^2$$-\beta^2$=$4\sqrt{3}$
- $\alpha^2$+$\beta^2$=$\frac{9}{2}$
- $\beta^2$+$2\sqrt{\alpha}$=$\frac{19}{4}$
- $\beta^2$$-2\sqrt{\alpha}$=$\frac{19}{4}$
- The value of $\frac{1}{1!50!}$+$\frac{1}{3!48!}$+$\frac{1}{5!46!}$+......+$\frac{1}{49!2!}$+$\frac{1}{51!1!}$ is:
- $\frac{2^{50}}{51!}$
- $\frac{2^{51}}{50!}$
- $\frac{2^{51}}{51!}$
- $\frac{2^{50}}{50!}$
- Let the image of the point $P(2, -1, 3)$ in the plane $x$+$2y-$$z$=0 be $Q$. Then the distance of the plane $3x$+$2y$+$z$+29=0 from the point $Q$ is
- $\frac{22\sqrt{2}}{7}$
- $3\sqrt{14}$
- $\frac{24\sqrt{2}}{7}$
- $2\sqrt{14}$
- The shortest distance between the lines $\frac{x-5}{1}$=$\frac{y-2}{2}$=$\frac{z-4}{-3}$ and $\frac{x+3}{1}$=$\frac{y+5}{4}$=$\frac{z-1}{-5}$ is
- $5\sqrt{3}$
- $6\sqrt{3}$
- $7\sqrt{3}$
- $4\sqrt{3}$
- $\lim \limits_{n \to \infty} \left[\frac{1}{1+n}+\frac{1}{2+n}+\frac{1}{3+n}+.....+\frac{1}{2n}\right]$ is equal to
- 0
- $\log_e\left(\frac{2}{3}\right)$
- $\log_e2$
- $\log_e\left(\frac{3}{2}\right)$
SECTION - B
(Numerical Answer Type)
This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.
- The number of 3-digit numbers, that are divisible by either 2 or 3 but not divisible by 7, is…………
- Let $\vec{v}$=$\alpha \hat{i}$+$2\hat{j}$$-3\hat{k}$, $\vec{w}$=$2\alpha \hat{i}$+$\hat{j}$$-\hat{k}$ and $\vec{u}$ be a vector such that $|\vec{u}|$=$\alpha >0$. If the minimum value of the scalar triple product $\begin{equation*} \begin{bmatrix} \vec{u} & \vec{v} & \vec{w} \end{bmatrix} \end{equation*}$ is $-\alpha \sqrt{3401}$, and $|\vec{u}•\vec{i}|^2$=$\frac{m}{n}$ where $m$ and $n$ are coprime natural numbers, then $m+n$ is equal to ..............
- The remainder, when $19^{200}$+$23^{200}$ is divisible by $49$, is........
- $A(2, 6, 2)$, $B(-4, 0, \lambda)$, $C(2, 3, -1)$ and $D(4, 5, 0)$, $|\lambda| \leq 5$ are the vertices of a quadrilateral $ABCD$. If its area is 18 square units, then $5-6\lambda$ is equal to ..............
- Let $f:R \to R$ be a differentiable function such that $f'(x)$+$f(x)$=$\int \limits_{0}^{2}f(t)dt$. If $f(0)$=$e^{-2}$, then $2f(0)-f(2)$ is equal to............
- If $\int \limits_{0}^{1}(x^{21}+x^{14}+x^7)(2x^{14}+3x^7+6)^{1/7}dx$=$\frac{1}{l}(11)^{m/n}$ where $l, m, n \in N, m$ and $n$ are coprime then $l+m+n$ is equal to........
- Let $A$ be the area bounded by the curve $y$=$x|x-3|$, the $x-$axis and the ordinates $x=-1$ and $x=2$. Then $12A$ is equal to..........
- Let $a_1$=8, $a_2$, $a_3$,......., $a_n$ be an A.P. If the sum of its first four terms is 50 and the sum of its last four terms is 170, then the product of its middle two terms is ............
- The number of words, with or without meaning, that can be formed using all the letters of the word ASSASSINATION so that the vowels occur together, is…….
- If $f(x)$=$x^2$+$g'(1)x$+$g''(2)$ and $g(x)$=$f(1)x^2$+$xf'(x)$+$f''(x)$, then the value of $f(4)-g(4)$ is equal to .............
Download as PDF
Comments
Post a Comment