Download JEE Main 2023 Question Paper (08 Apr - Shift 1) Mathematics
Important Instructions
- Section-A : Attempt all questions.
- Section-B : Do any 5 questions out of 10 Questions.
- Section-A (01 – 20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.
- Section-B (1 – 10) contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. Each question carries +4 marks for correct answer and –1 mark for wrong answer
SECTION - A
(One Option Correct Type)
This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct
- Let the number of elements in sets $A$ and $B$ be five and two respectively. Then the number of subsets of
A ×B each having at least 3 and at most 6
- 782
- 792
- 752
- 772
- The number of arrangements of the letters of the word "INDEPENDENCE" in which all the vowels always
occur together is
- 18000
- 33600
- 16800
- 14800
- The number of ways, in which 5 girls and 7 boys can be seated at a round so that no two girls sit together, is
- $7(360)^2$
- $7(720)^2$
- $126(5!)^2$
- 720
- If the equation of the plane containing the line $x$ + 2$y$ + 3$z$ – 4 = 0 = 2$x$ + $y-z$ +5 and perpendicular to the
plane $\vec{r}$=$(\hat{i}-\hat{j})$+$\lambda (\hat{i}+\hat{j}+\hat{k})$+$\mu(\hat{i}-2\hat{j}+3\hat{k})$ is $ax$+$by$+$cz$=4, than $(a - b + c)$ is equal
- 20
- 22
- 21
- 18
- If the points with position vectors $\alpha \hat{i}$+$10 \hat{j}$+$13 \hat{k}$, $6 \hat{i}$+$11\hat{j}$+$11\hat{k}$, $\frac{9}{2} \hat{i}$+$\beta \hat{j}$$-8\hat{k}$ are collinear, then $(19\alpha-6\beta)^2$ is equal to............
- 25
- 16
- 49
- 36
- Let $S_k$$\frac{1+2+.....
+K}{k}$ and $\sum \limits_{j=1}^{n}S_j^2$=$\frac{n}{A}(Bn^2+Cn+D)$, where $A$, $B$, $C$, $D \in N$ and $A$ has least value. Then,
- $A$ + $B$ =5$(D-C)$
- $A$ + $C$+ $D$ is not divisible by B
- $A$ +$B$ + $C$ +$D$ is divisible by 5
- $A$ + $B$ is divisible by $D$
- Negation of (p=>q)=>(q=>p) is
- q∧(~p)
- q∧(~p)
- (~q)∧p
- (~q)∧p
- If for $z$ = $\alpha$ + $i\beta$$|z + 2|$ = $z + 4 (1 + i)$, then $\alpha + \beta$ and $\alpha \beta$ are the roots of the
- $x^2$+$3x-4$=0
- $x^2+x-$12=0
- $x^2+2x-$3=0
- $x^2+7x$+12=0
- If the coefficients of three consecutive terms in the expansion of $(1+x)^n$ are in the ratio 1:5:20, then the
coefficient of the fourth term is
- 3654
- 2436
- 1827
- 5481
- Let $A$=$\begin{equation*} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \end{equation*}$. If $|adj(adj(adi2A))|$=$(16)^n$, then $n$ is equal to
- 9
- 12
- 8
- 10
- Let $\alpha, \beta, \gamma$ be the three roots of the equation $x^3$+ $bx$ + $c$ =0. If $\beta \gamma$ = 1 = $–\alpha$, then $b^3$ + $2c^3$ – $3\alpha^3$ – $6\beta^3$ – $8\gamma^3$ is equal to
- 21
- 19
- $\frac{155}{2}$
- $\frac{169}{8}$
- In a bolt factory, machines $A$, $B$ and $C$, manufacture respectively 20%, 30% and 50% of the total bolts, Of their output , 3, 4 and 2 percent are respectively defective bolts, $A$ blot is drawn at random from the product. If the bolt drawn is found the defective, then the probability that is manufactured by the machine $C$is
- $\frac{9}{28}$
- $\frac{5}{14}$
- $\frac{2}{7}$
- $\frac{3}{7}$
- Let $f(x)$=$\frac{\sin x-\cos x-\sqrt{2}}{\sin x -\cos x}$, $x \in [0, \pi]-\left\{\frac{\pi}{4}\right\}$. Then $f\left(\frac{7\pi}{12}\right)$$f''\left(\frac{7\pi}{12}\right)$ is equal to
- $\frac{-1}{3\sqrt{3}}$
- $\frac{2}{9}$
- $\frac{2}{3\sqrt{3}}$
- $\frac{-2}{3}$
- The shortest distance between the lines $\frac{x-4}{4}$=$\frac{y+2}{5}$=$\frac{z+3}{3}$ and $\frac{x-1}{3}$=$\frac{y-3}{4}$=$\frac{z-4}{2}$ is
- $6 \sqrt{3}$
- $3 \sqrt{6}$
- $6 \sqrt{2}$
- $2\sqrt{6}$
- Let $C (\alpha, \beta)$ be the circumcenter of the triangle formed by the lines
$4x$+$3y$ = 69,
$4y-$$3x$=17, and
$x$+$7y$=61.
Then $(\alpha– \beta)^2$ + $\alpha$ + $\beta$ is equal to- 18
- 15
- 16
- 17
- The area of the region {$(x, y):x^2 \leq y \leq 8-x^2$, $y \leq 7$} is
- 18
- 20
- 21
- 24
- Let $P$=$\begin{equation*}\begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \end{equation*}$, $A$=$\begin{equation*}\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \end{equation*}$ and $Q$=$PAP^T$. If $P^TQ^{2007}P$=$\begin{equation*}\begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{equation*}$, then $2a$ + $b $$-3c$$ –4d$ equal to
- 2005
- 2004
- 2007
- 2006
- Let $I(x)$=$\int \frac{(x+1)}{x(1+xe^x)^2}dx$, $x>0$. If $\lim \limits_{x \to \infty} I(x)=0$, then $I(1)$ is equal to
- $\frac{e+1}{e+2}-\log_e(e+1)$
- $\frac{e+1}{e+2}+\log_e(e+1)$
- $\frac{e+2}{e+1}-\log_e(e+1)$
- $\frac{e+2}{e+1}+\log_e(e+1)$
- Let $R$ be the focus of the parabola $y^2$= $20x$ and the line $y$ = $mx$ + $c$ intersect the parabola at two points $P$ and $Q$. Let the point $G (10,10)$ be the centroid of the triangle $PQR$. If $c-m$=6, then $(PQ)^2$ is
- 325
- 296
- 317
- 316
- $\lim \limits_{x \to 0}\left(\left(\frac{(1-\cos ^2(3x))}{\cos^3(4x)}\right)\right.$$\left. \left(\frac{\sin^3(4x)}{(\log_e(2x+1))^5}\right)\right)$ is equal to.........
- 15
- 9
- 24
- 18
SECTION - B
(Numerical Answer Type)
This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.
- If $a_n$ is the greatest term in the sequence $a_n$=$\frac{n^3}{n^4+147}$, $n=1, 2, 3, ........ , then $a$ is equal to..........
- Let the mean and variance of 8 number $x$ , $y$,10,12,6,12,4,8 be 9 and 9.25 respectively, If $x>y$, then $3x – 2y$ is equal to_____.
- Let $[t] $denote the greatest integer $\leq t$. If the constant term in the expansion of $\left(3x^2-\frac{1}{2x^5}\right)^7$ is $a$, then $[ a ]$ is equal to _____.
- Let $\lambda_1, \lambda_2$ be the values of $\lambda$ for which the points $\left(\frac{5}{2}, 1, \lambda \right)$ and $(-2, 0, 1)$ are at equal distance from the plane $2x$ + $3y$$ -6z$ +7=0. If $\lambda_1$ > $\lambda_2$, then the distance of the point $(\lambda_1– \lambda_2, \lambda_2, \lambda_1)$ from the line $\frac{x-5}{1}$=$\frac{y-1}{2}$=$\frac{z+7}{2}$ is...........
- The largest natural number $n$ such that $3^n$ divides 66! is ________.
- Consider a circle $C_1$: $x^2$+ $y^2$ $– 4x$ $– 2y$=$\alpha$–5, Let its mirror image in the line $y$=$2x$+1 be another circle $C_2$:$5x^2$+ $5y^2$–$10f x$$-10gy$+36=0. Let $r$ be the radius of $C_2$, then $\alpha + r$ is equal to ___________
- If the solution curve of the differential equation $(y – 2logex)dx$ + $(xlog_ex^2)dy$ =0, $x>1$ passes through the points $\left(e, \frac{4}{3}\right)$ and $(e^4, a)$ then $a$ is equal to..........
- Let $[t]$ denote the greatest integer $\leq t$, Then $\frac{2}{\pi} \int \limits_{\pi/6}^{5\pi/6}(8[cosec x]-5[\cot x])dx$ is equal to.............
- Let $A$ = {0, 3, 4, 6, 7, 8, 9, 10} and $R$ be the relation defined on $A$ such that $R$ = {$(x, y) \in A × A:x-y$ is odd positive integer or $x - y$ = 2} . The minimum number of elements that must be added to the relation $R$, so that it is a symmetric relation , is equal to ______.
- Let $\vec{a}$=$6\hat{i}$+$9\hat{j}$+$12\hat{k}$, $\vec{b}$=$\alpha \hat{i}$+$11\hat{j}-2\hat{k}$ and $\vec{c}$ be vectors such that $\vec{a}×\vec{c}$=$\vec{a}×\vec{b}$. If $\vec{a}•\vec{c}$=-12, $\vec{c}•(\hat{i}-2\hat{j}+\hat{k})$=5, then $\vec{c}•(\hat{i}+\hat{j}+\hat{k})$ is equal to ..............
Download as PDF
Comments
Post a Comment