Download JEE Main 2023 Question Paper (31 Jan - Shift 2) Mathematics
Important Instructions
- Section-A : Attempt all questions.
- Section-B : Do any 5 questions out of 10 Questions.
- Section-A (01 – 20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.
- Section-B (1 – 10) contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. Each question carries +4 marks for correct answer and –1 mark for wrong answer
SECTION - A
(One Option Correct Type)
This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct
- If $\phi(x)$=$\frac{1}{\sqrt{x}}\int \limits_{\frac{\pi}{4}}^{x}(4\sqrt{2}\sin t-3\phi '(t))dt$, $x>0$, then $\phi '\left(\frac{\pi}{4}\right)$ is equal to :
- $\frac{8}{\sqrt{\pi}}$
- $\frac{4}{6+\sqrt{\pi}}$
- $\frac{4}{6-\sqrt{\pi}}$
- $\frac{8}{6+\sqrt{\pi}}$
- Let the plane $P$:$8x$+$a_1y$+$a_2z$+12=0 be parallel to the line $L:$$\frac{x+2}{2}$=$\frac{y-3}{3}$=$\frac{z+4}{5}$. If the intercept of $P$ on the $y-$ axis is 1, then the distance between $P$ and $L$ is:
- $\sqrt{\frac{7}{2}}$
- $\sqrt{\frac{2}{7}}$
- $\frac{6}{\sqrt{14}}$
- $\sqrt{14}$
- $\lim \limits_{x \to \infty} \frac{(\sqrt{3x+1}+\sqrt{3x-1})^{6}+(\sqrt{3x+1}-\sqrt{3x-1})^{6}}{(x+\sqrt{x^2-1})^{6}+(x-\sqrt{x^2-1})^{6}}$
- is equal to 27
- is equal to $\frac{27}{2}$
- does not exist
- is equal to 9
- Let $f:R-{2, 6} \to R$ be real valued function defined as $f(x)$=$\frac{x^2+2x+1}{x^2-8x+12}$. Then range of $f$ is
- $\left(-\infty, -\frac{21}{4}\right] \cup [0, \infty)$
- $\left(-\infty, -\frac{21}{4}\right) \cup (0, \infty)$
- $\left(-\infty, -\frac{21}{4}\right] \cup [1, \infty)$
- $\left(-\infty, -\frac{21}{4}\right] \cup \left[\frac{21}{4}, \infty \right)$
- Let $\alpha >0$. If $\int \limits_{0}^{\alpha} \frac{x}{\sqrt{x+\alpha}-\sqrt{x}}dx$=$\frac{16+20\sqrt{2}}{15}$, then $\alpha$ is equal to :
- 2
- 4
- $\sqrt{2}$
- $2\sqrt{2}$
- Let $H$ be the hyperbola, whose foci are $(1±\sqrt{2}, 0)$ and eccentricity is $\sqrt{2}$. Then the length of its
latus rectum is………
- 3
- $\frac{5}{2}$
- 2
- $\frac{3}{2}$
- The foot of perpendicular from the origin $O$ to a plane $P$ which meets the co-ordinate axes at the
points $A$, $B$, $C$ is $(2,a,4)$, $a \in N$. If the volume of the tetrahedron $OABC$ is 144 $unit^3$, then Which of the following points is NOT on $P$?
- (3, 0, 4)
- (0, 4, 4)
- (0, 6, 3)
- (2, 2, 4)
- The number of values of {$r \in p, q, ~p, ~q}$ for which $((p∧q)=>(r∨q))∧((p∧r)=>q)$ is a tautology is:
- 2
- 1
- 3
- 4
- Let the mean and standard deviation of marks of class $A$ of 100 students be respectively 40 and $\alpha$(>0), and the mean and standard deviation of marks of class $B$ of $n$ students be respectively 55 and $30-\alpha$. If the mean and variance of the marks of the combined class of 100+$n$ students are respectively 50 and 350, then the sum of variances of classes $A$ and $B$ is :
- 500
- 650
- 900
- 450
- Let $a_1$, $a_2$, $a_3$...... be an A.P. If $a_7$=3, the product $a_1$$a_4$ is minimum and the sum of its first $n$ terms is zero, then $n!-4a_{n(n+2)}$ is equal to :
- $\frac{381}{4}$
- 9
- $\frac{33}{4}$
- 24
- Among the relations
$S$=$\left\{(a, b):a, b \in R-{0}, 2+\frac{a}{b} >0 \right\}$ and $T$=$\left\{(a, b):a, b \in R, a^2-b^2 \in Z\right\}$- both S and T are symmetric
- neither S nor T is transitive
- S is transitive but T is not
- T is symmetric but S is not
- The complex number $z$=$\frac{i-1}{\cos \frac{\pi}{3}+i\sin{\pi}{3}}$ is equal to:
- $\sqrt{2}i\left(\cos\frac{5\pi}{12}-i\sin\frac{5\pi}{12}\right)$
- $\cos\frac{\pi}{12}-i\sin\frac{\pi}{12}$
- $\sqrt{2}\left(\cos\frac{5\pi}{12}+i\sin\frac{5\pi}{12}\right)$
- $\sqrt{2}\left(\cos\frac{\pi}{12}+i\sin\frac{\pi}{12}\right)$
- If a point $P(\alpha, \beta, \gamma)$ satisfying
$\begin{equation*} \begin{pmatrix} \alpha & \beta & \gamma \end{pmatrix} \begin{pmatrix} 2 & 10 & 8 \\ 9 & 3 & 8 \\ 8 & 4 & 8 \end{pmatrix} \end{equation*}$=$\begin{equation*} \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \end{equation*}$ lies on the plane $2x$+$4y$+$3z$=5, then $6\alpha$+$9\beta$+$7\gamma$ is equal to:- -1
- 11
- $\frac{11}{5}$
- $\frac{5}{4}$
- The set of all values of $a^2$ for which the line $x+y$=0 bisects two distinct chords drawn from a point $P\left(\frac{1+a}{2}, \frac{1-a}{2}\right)$ on the circle $2x^2$+$2y^2$$-(1+a)x-(1-a)y$=0, is equal to:
- $(8, \infty)$
- $(0, 4]$
- $(4, \infty)$
- $(2, 12]$
- Let $P$ be the plane, passing through the point $(1, -1, -5)$ and perpendicular to the line joining the points $(4, 1, -3)$ and $(2, 4, 3)$. Then the distance of $P$ from the point $(3, -2, 2)$ is
- 7
- 4
- 6
- 5
- Let $y=y(x)$ be the solution of the differential equation $(3y^2-5x^2)ydx$+$2x(x^2-y^2)dy$=0 such that $y(1)=1$. Then $|(y(2))^3-12y(2)|$ is equal to:
- $32\sqrt{2}$
- 32
- 64
- $16\sqrt{2}$
- Let : $\vec{a}=\hat{i}+2\hat{j}+3\hat{k}$, $\vec{b}$=$\hat{i}-\hat{j}+2\hat{k}$ and $\vec{c}$=$5\hat{i}-3\hat{j}+3\hat{k}$ be three vectors. If $\vec{r}$ is a vector such that, $\vec{r}×\vec{b}=\vec{c}×\vec{b}$ and $\vec{r}•\vec{a}$=0, then 25$|\vec{r}|^2$ is equal to
- 339
- 560
- 449
- 336
- Let $(a, b)⊂(0, 2\pi)$ be the largest interval for which $\sin^{-1}(\sin \theta)-\cos^{-1}(\sin \theta)>0$, $\theta \in (0, 2\pi)$, holds. If $\alpha x^2$+$\beta x$+$\sin^{-1}(x^2-6x+10)$=0 and $\alpha-\beta$=$b-a$, then $\alpha$ is equal to:
- $\frac{\pi}{8}$
- $\frac{\pi}{16}$
- $\frac{\pi}{48}$
- $\frac{\pi}{12}$
- The absolute minimum value, of the function $f(x)$=$|x^2-x+1|$+$[x^2-x+1]$, where $[t]$ denotes the greatest integer function, in the interval $[-1, 2]$ is:
- $\frac{3}{2}$
- $\frac{3}{4}$
- $\frac{5}{4}$
- $\frac{1}{4}$
- The equation $e^{4x}$+$8e^{3x}$+$13e^{2x}-8e^x+1$=0, $x \in R$ has:
- no solution
- four solutions two of which are negative
- two solutions and both are negative
- two solutions and only one of them is negative
SECTION - B
(Numerical Answer Type)
This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.
- Let $\vec{a}$, $\vec{b}$, $\vec{c}$ be three vectors such that $|\vec{a}|$=$\sqrt{31}$, 4$|\vec{b}|$=$|\vec{c}|$=2 and 2$(\vec{a}×\vec{b})$=$(\vec{c}×\vec{a}).$ If the angle between $\vec{b}$ and $\vec{c}$ is $\frac{2\pi}{3}$, then $\left(\frac{\vec{a}×\vec{c}}{\vec{a}•\vec{b}}\right)^2$ is equal to:
- Let $A$ be the event that the absolute difference between two randomly choosen real numbers in the sample space $[0, 60]$ is less than or equal to $a$. If $P(A)$=$\frac{11}{36}$, then $a$ is equal to .........
- If $^{2n+1}P_{n-1}:^{2n-1}P_n$=11:21, then $n^2+n$+15 is equal to :
- If the constant term in the binomial expansion of $\left(\frac{x^{\frac{5}{2}}}{2}-\frac{4}{x^l}\right)^{9}$ is $-84$ and the coefficient of $x^{-3l}$ is $2^{\alpha}\beta$, where $\beta$<0 is an odd number, then $|\alpha l-\beta|$ is equal to ........
- Let $A$ be a $n×n$ matrix such that $|A|$=2. If the determinant of the matrix $Adj(2•Adj(2A^{-1}))$ is $2^{84}$, then $n$ is equal to..........
- Let $S$ be the set of all $a \in N$ such that the area of the triangle formed by the tangent at the point $P(b, c), b, c \in N$, on the parabola $y^2=2ax$ and the lines $x=b$, $y=0$ is 16 $unit^2$, then $\sum \limits_{a \in S} a$ is equal to............
- The sum $1^2-2.3^2$+$3.5^2-4.7^2$+$5.9^2-......$+$15.29^2$ is.........
- The coefficient of $x^{-6}$, in the expansion of $\left(\frac{4x}{5}+\frac{5}{2x^2}\right)^9$, is............
- Let the area of the region $\left\{(x,y):|2x-1|\leq y\leq|x^2-x|, 0 \leq x \leq 1 \right\}$ be $A$. Then $(6A+11)^2$ is equal to........
- Let $A=[a_{ij}]$, $a_{ij} \in Z \cap [0, 4]$, $1 \leq i, j \leq 2$. The number of matrices $A$ such that the sum of all entries is a prime number $p \in (2, 13)$ is.........
Download as PDF
Comments
Post a Comment