Download JEE Main 2024 Question Paper (29 Jan - Shift 2) Mathematics
Important Instructions
- Section-A : Attempt all questions.
- Section-B : Do any 5 questions out of 10 Questions.
- Section-A (01 – 20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.
- Section-B (1 – 10) contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. Each question carries +4 marks for correct answer and –1 mark for wrong answer
SECTION - A
(One Option Correct Type)
This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct
- Let $A$=$\begin{equation*} \begin{bmatrix} 2 & 1 & 2 \\ 6 & 2 & 11 \\ 3 & 3 & 2 \end{bmatrix} \end{equation*}$ and $P$=$\begin{equation*} \begin{bmatrix} 1 & 2 & 0 \\ 5 & 0 & 2 \\ 7 & 1 & 5\end{bmatrix}\end{equation*}$. The sum of the prime factors of $|P^{-1} AP - 2I|$ is equal to
- 26
- 27
- 66
- 23
- Number of ways of arranging 8 identical books into 4 identical shelves where any number of shelves may remain empty is equal to
- 18
- 16
- 12
- 15
- Let $P(3, 2, 3)$, $Q(4, 6, 2)$ and $R(7, 3, 2)$ be the vertices of $\Delta PQR$. Then, the angle $\angle{QPR}$ is
- $\frac{\pi}{6}$
- $\cos^{-1}\left(\frac{7}{18}\right)$
- $\cos^{-1}\left(\frac{1}{18}\right)$
- $\frac{\pi}{3}$
- If the mean and variance of five observations are $\frac{24}{5}$ and $\frac{194}{25}$ respectively and the mean of first
four observations is $\frac{7}{2}$, then the variance of the first four observations in equal to
- $\frac{4}{5}$
- $\frac{77}{12}$
- $\frac{5}{4}$
- $\frac{105}{4}$
- The function $f(x)$ = $2x+3(x)^{\frac{2}{3}}$, $x \in R$, has
- exactly one point of local minima and no point of local maxima
- exactly one point of local maxima and no point of local minima
- exactly one point of local maxima and exactly one point of local minima
- exactly two points of local maxima and exactly one point of local minima
- Let $r$ and $\theta$ respectively be the modulus and amplitude of the complex number $z$=$2-i\left(2\tan\frac{5\pi}{8}\right)$, then
$(r, \theta)$is equal to
- $\left(2\sec \frac{3\pi}{8}, \frac{3\pi}{8}\right)$
- $\left(2\sec \frac{3\pi}{8}, \frac{5\pi}{8}\right)$
- $\left(2\sec \frac{5\pi}{8}, \frac{3\pi}{8}\right)$
- $\left(2\sec \frac{11\pi}{8}, \frac{11\pi}{8}\right)$
- The sum of the solutions $x \in R$ of the equation $\frac{3\cos 2x+\cos^32x}{\cos^6x -\sin^6x}$=$x^3-x^2$+6 is
- 0
- 1
- -1
- 3
- Let $\vec{OA}$=$\vec{a}$, $\vec{OB}$=$12\vec{a}+4\vec{b}$ and $\vec{OC}$=$\vec{b}$, where $O$ is the origin. If $S$ is the parallelogram with adjacent sides $OA$ and $OC$, then $\frac{\text{area of the quadrilateral OABC}}{\text{area of S}}$ is equal to........
- 6
- 10
- 7
- 8
- If $\log_e a$, $\log_e b$, $\log_e c$ are in an A.P. and $\log_e a –\log_e2b$, $\log_e2b – log_e3c$, $log_e3c – log_e a$ are also in an A.P, then $a : b : c$ is equal to
- 9:6:4
- 16:4:1
- 25:10:4
- 6:3:2
- If $\int \frac{\sin^{\frac{3}{2}}x+\cos^{\frac{3}{2}}x}{\sqrt{\sin^3x\cos^3x\sin(x-\theta)}}dx$=$A\sqrt{\cos \theta \tan x-\sin \theta}$+$B\sqrt{\cos\theta-\sin \theta \cot x}$+C, where $C$ is the integration constant, then $AB$ is
equal to
- $4 cosec(2\theta)$
- $4 \sec \theta$
- $2 \sec \theta$
- $8 cosec(2\theta)$
- The distance of the point (2, 3) from the line $2x –3y$ + 28 = 0, measured parallel to the line $\sqrt{3}x-y$+1=0 is equal to
- $4\sqrt{2}$
- $6\sqrt{3}$
- $3+4\sqrt{2}$
- $4+6\sqrt{3}$
- If $\sin\left(\frac{y}{x}\right)$=$\log_e|x|$+$\frac{\alpha}{2}$ is the solution of the differential equation $x \cos\left(\frac{y}{x}\right)\frac{dy}{dx}$=$y \cos\left(\frac{y}{x}\right)+x$ and $y(1)$=$\frac{\pi}{3}$, then $\alpha^2$ is equal to
- 3
- 12
- 4
- 9
- If each term of a geometric progression $a_1$, $a_2$, $a_3$,… with $a_1$=$\frac{1}{8}$ and $a_2 \neq a_1$, is the arithmetic mean of the next two terms and $S_n$=$a_1$+$a_2$+....+$a_n$, then $S_{20}$ – $S_{18}$ is equal to
- $2^{15}$
- $-2^{18}$
- $2^{18}$
- $-2^{15}$
- Let $A$ be the point of intersection of the lines $3x + 2y$ = 14, $5x – y$ = 6 and $B$ be the point of intersection of the lines $4x + 3y$ = 8, $6x + y$ = 5. The distance of the point $P(5, –2)$ from the line $AB$ is
- $\frac{13}{2}$
- 8
- $\frac{5}{2}$
- 6
- Let $x$ = $\frac{m}{n}$ ($m, n$ are co-prime natural numbers) be a solution of the equation $\cos (2sin^{-1} x$=$\frac{1}{9}$ and let $\alpha, \beta$ be the roots of the equation $mx^2$– $nx$ –$m + n$ = 0. Then the point
$( \alpha, \beta)$ lies on the line
- $3x+2y=2$
- $5x-8y=-9$
- $3x-2y=-2$
- $5x+8y=9$
- The function $f(x)$=$\frac{x}{x^2-6x-16}$, $x \in R-${$-2$, 8}
- decreases in (–2, 8) and increases in $(-\infty , 2) \cup (8, \infty)$
- decreases in $(-\infty, -2) \cup ( -2,8) \cup (8, \infty)$
- decreases in $(-\infty , -2)$ and increases in $(8, \infty)$
- increases in $(-\infty , -2) \cup ( -2,8) \cup (8, \infty)$
- Let $y$=$\log_e\left(\frac{1-x^2}{1+x^2}\right)$, $-1 < x < 1$. Then at $x=\frac{1}{2}$, the value of 225$(y ' - y")$ is equal to
- 732
- 746
- 742
- 736
- If $R$ is the smallest equivalence relation on the set {1, 2, 3, 4} such that {(1,2), (1,3)} $\subset R$, then the
number of elements in $R$ is ______
- 10
- 12
- 8
- 15
- An integer is chosen at random from the integers 1, 2, 3, …, 50. The probability that the chosen integer is a multiple of atleast one of 4, 6 and 7 is
- $\frac{8}{25}$
- $\frac{21}{50}$
- $\frac{9}{50}$
- $\frac{14}{25}$
- Let a unit vector $\hat{u}$=$x\hat{i}$+$y\hat{j}$+$z\hat{k}$ make angles $\frac{\pi}{2}$, $\frac{\pi}{3}$ and $\frac{2\pi}{3}$ with the vectors $\frac{1}{\sqrt{2}}\hat{i}$+$\frac{1}{\sqrt{2}}\hat{k}$, $\frac{1}{\sqrt{2}}\hat{j}$+$\frac{1}{\sqrt{2}}\hat{k}$ and $\frac{1}{\sqrt{2}}\hat{i}$+$\frac{1}{\sqrt{2}}\hat{j}$ respectively. If $\vec{v}$=$\frac{1}{\sqrt{2}}\hat{i}$+$\frac{1}{\sqrt{2}}\hat{j}$+$\frac{1}{\sqrt{2}}\hat{k}$, then $|\hat{u}-\vec{v}|^2$ is equal to
- $\frac{11}{2}$
- $\frac{5}{2}$
- 9
- 7
SECTION - B
(Numerical Answer Type)
This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.
- Let $\alpha$, $\beta$ be the roots of the equation $x^2-\sqrt{6}x+3$=0 such that $Im (\alpha)$ > $Im (\beta)$. Let $a$, $b$ be integers not divisible by 3 and $n$ be a natural number such that $\frac{\alpha^{99}}{\beta}$+$\alpha^{98}$=$3^n(a+ib)$, $i$=$\sqrt{-1}$. Then $n + a + b$ is equal to _______.
- Let for any three distinct consecutive terms $a$, $b$, $c$ of an $A.P$, the lines $ax$ + $by$ + $c$ = 0 be concurrent at the point $P$ and $Q(\alpha, \beta)$ be a point such that the
system of equations
$x$ + $y$ + $z$ = 6,
$2x$ + $5y$ + $\alpha z$ = $\beta$ and
$x$ + $2y$ + $3z$ = 4, has infinitely many solutions. Then $(PQ)^2$ is equal to ________. - Let $P(\alpha ,\beta)$ be a point on the parabola $y^2= 4x$. If $P$ also lies on the chord of the parabola $x^2= 8y$ whose mid point is $\left(1, \frac{5}{4}\right)$. Then $(\alpha-28)$$(\beta-8)$ is equal to...........
- If $\int \limits_{\frac{\pi}{6}}^{\frac{\pi}{3}}\sqrt{1-\sin 2x}dx$=$\alpha$+$\beta\sqrt{2}$+$\gamma\sqrt{3}$, where $\alpha$, $\beta$and $\gamma$ are rational numbers, then $3\alpha+4\beta- \gamma$ is equal to _______.
- Let the area of the region {$(x, y): 0 \leq x \leq 3$, $0 \leq y \leq min{x^2+ 2, 2x + 2}$} be $A$. Then $12A$ is equal to _____.
- Let $O$ be the origin, and M and N be the points on the lines $\frac{x-5}{4}$=$\frac{y-4}{1}$=$\frac{z-5}{3}$ and $\frac{x+8}{12}$=$\frac{y+2}{5}$=$\frac{z+11}{9}$ respectively such that MN is the shortest distance between the given lines. Then $\vec{OM}$•$\vec{ON}$ is equal to ...................
- Let $f(x)$=$\sqrt{\lim \limits_{r \to x}\left\{\frac{2r^2[(f(r))^2-f(x)f(r)]}{r^2-x^2}-r^3e^{\frac{f(r)}{r}}\right\}}$ be differentiable in $(-\infty, 0) \cup (0, \infty)$ and $f(1)$ = 1. Then the value of $ea$, such that $f(a)$ = 0, is equal to _____.
- Remainder when ${64^{32}}^{32}$is divided by 9 is equal to…………….
- Let the set $C$={$(x, y) | x^2 -2^y=2024,$ $x, y \in N$. Then $\sum \limits_{(x,y)\in C}(x + y)$is equal to _______.
- Let the slope of the line $45x + 5y$ + 3 = 0 be $27r_1$+$\frac{9r_2}{2}$ for some $r_1$, $r_2 \in R$. Then $\operatorname{Lim}\limits_{x \rightarrow 3}\left(\int_3^x \frac{8 t^2}{\frac{3 r_2 x}{2}-r_2 x^2-r_1 x^3-3 x} d t\right)$ is equal to ____.
Download as PDF
Comments
Post a Comment