Download JEE Main 2025 Question Paper (02 Apr - Shift 1) Mathematics
Important Instructions
- Section-A : Attempt all questions.
- Section-B : Attempt all questions.
- Section-A (01 – 20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.
- Section-B (01 – 05) contains 5 Numerical value based questions. The answer to each question is rounded off to the nearest integer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.
SECTION - A
(One Option Correct Type)
This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct
- The largest $n \in N$ such that $3^n$ divides 50! is:
- 21
- 22
- 20
- 23
- Let one focus of the hyperbola $H$: $\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1 be at $(\sqrt{10}, 0)$ and the corresponding directrix be $x=\frac{9}{\sqrt{10}}$. If $e$ and $l$ respectively are the eccentricity and the length of the latus rectum of $H$, then $9 (e^2+ l)$ is equal to:
- 14
- 15
- 16
- 12
- The number of sequences of ten terms, whose terms are either 0 or 1 or 2, that contain exactly five 1s and exactly three 2s, is equal to
- 360
- 45
- 2520
- 1820
- Let $f : R \to R$ be a twice differentiable function such that $(sinx cosy)$$(f(2x+2y) – f(2x – 2y))$ = $(cosx
siny)$$(f(2x+2y) + f(2x – 2y))$, for all $x, y \in R$. If $f^{^{,}}(0)=\frac{1}{2}$, then the value of $24 f''\left(\frac{5\pi}{3}\right)$ is
- 2
- -3
- 3
- -2
- Let $A$=$\begin{equation*}\begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix}\end{equation*}$, $\alpha >0$, such that $det(A)$ = 0 and $\alpha$ + $\beta$ = 1. If I denotes 2 × 2 identity matrix, then the matrix $(1 + A)^8$ is:
- $\begin{equation*}\begin{bmatrix} 4 & -1 \\ 6 & -1 \end{bmatrix}\end{equation*}$
- $\begin{equation*}\begin{bmatrix} 257 & -64 \\ 514 & -127 \end{bmatrix}\end{equation*}$
- $\begin{equation*}\begin{bmatrix} 1025 & -511 \\ 2024 & -1024 \end{bmatrix}\end{equation*}$
- $\begin{equation*}\begin{bmatrix} 766 & -255 \\ 1530 & -509 \end{bmatrix}\end{equation*}$
- The term independent of $x$ in the expansion of $\left(\frac{(x+1)}{(x^{2/3}+1-x^{1/3})}-\frac{(x+1)}{(x-x^{1/2})}\right)^{10}$, $x > 1$ is:
- 210
- 150
- 240
- 120
- If $\theta \in [-2\pi, 2\pi]$, then the number of solutions of $2\sqrt{2} \cos^2\theta$+$(2-\sqrt{6})\cos \theta$$-\sqrt{3}$=0, is equal to:
- 12
- 6
- 8
- 10
- Let $a_1$, $a_2$, $a_3$, ... be in an $A.P.$ such that $\sum \limits_{k=1}^{12}a_{2k-1}$=$-\frac{72}{5}a_1$, $a_1 \neq 0$. If $\sum \limits_{k=1}^{n}a_k$=0, then $n$ is:
- 11
- 10
- 18
- 17
- If the function $f(x)$ = $2x^3$– $9ax^2$ + $12a^2x$ + 1, where $a$ > 0, attains its local maximum and local minimum values at $p$ and $q$, respectively, such that $p^2= q$, then $f(3)$ is equal to:
- 55
- 10
- 23
- 37
- Let $z$ be a complex number such that $|z|=1$. If $\frac{2+k^2z}{k+\bar{z}}$=$kz$, $k \in R$, then the maximum distance of $k + ik^2$from the circle $|z –(1 + 2 i)|$ = 1 is:
- $\sqrt{5}+1$
- 2
- 3
- $\sqrt{3}+1$
- If $\vec{a}$ is nonzero vector such that its projections on the vectors $2\hat{i}$$-\hat{j}$+$2\hat{k}$, $\hat{i}$+$2\hat{j}$$-2\hat{k}$ and $\hat{k}$ are equal, then a unit vector along $\vec{a}$is:
- $\frac{1}{\sqrt{155}}(-7\hat{i}+9\hat{j}+5\hat{k})$
- $\frac{1}{\sqrt{155}}(-7\hat{i}+9\hat{j}-5\hat{k})$
- $\frac{1}{\sqrt{155}}(7\hat{i}+9\hat{j}+5\hat{k})$
- $\frac{1}{\sqrt{155}}(7\hat{i}+9\hat{j}-5\hat{k})$
- Let $A$ be the set of all functions $f : Z \to Z$ and $R$ be a relation on $A$ such that $R$ = {$(f, g) : f (0) = g(1)$ and $f (1)$ = $g(0)$}. Then R is:
- Symmetric and transitive but not reflective
- Symmetric but neither reflective nor transitive
- Reflexive but neither symmetric nor transitive
- Transitive but neither reflexive nor symmetric
- For $\alpha$, $\beta$, $\gamma$ $\in R$, if $\lim \limits_{x \to 0} \frac{x^2\sin \alpha x+(\gamma-1)e^{x^2}}{\sin 2x-\beta x}$=3, then $\beta+\gamma-\alpha$ is equal to :
- 7
- 4
- 6
- -1
- If the system of linear equations
$3x$ + $y$ + $\beta z$ = 3
$2x$ + $\alpha y$ – $z$ = –3
$x$ + $2y$ + $z$ = 4
has infinitely many solutions, then the value of $22\beta – 9\alpha$ is :- 49
- 31
- 43
- 37
- Let $P_n$=$\alpha^n$+$\beta^n$, $n \in N$. If $P_{10}$=123, $P_9$=76, $P_8$=47 and $P_1$=1, then the quadratic equation having roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ is:
- $x^2-x+1$=0
- $x^2+x-1$=0
- $x^2-x-1$=0
- $x^2+x+1$=0
- If $S$ and $S'$ are the foci of the ellipse $\frac{x^2}{18}$+$\frac{y^2}{9}$=1and P be a point on the ellipse, then $min(SP.S'P)$ +
$max(SP.S'P)$ is equal to :
- $3(1+\sqrt{2})$
- $3(6+\sqrt{2})$
- 9
- 27
- Let the vertices $Q$ and $R$ of the triangle $PQR$ lie on the line $\frac{x+3}{5}$=$\frac{y-1}{2}$=$\frac{z+4}{3}$, $QR$=5 and the
coordinates of the point $P$ be (0, 2, 3). If the area of $PQR$ is $\frac{m}{n}$ then:
- $m-5\sqrt{21}n$=0
- $2m-5\sqrt{21}n$=0
- $5m-2\sqrt{21}n$=0
- $5m-21\sqrt{2}n$=0
- Let $ABCD$ be a tetrahedron such that the edges $AB$, $AC$ and $AD$ are mutually perpendicular. Let the areas of the triangles $ABC$, $ACD$ and $ADB$ be
5, 6 and 7 square units respectively. Then the area (in square units) of the $\Delta BCD$ is equal to :
- $\sqrt{340}$
- 12
- $\sqrt{110}$
- $7\sqrt{3}$
- Let $a \in R$ and $A$ be a matrix of order 3×3 such that $det(A)$ = –4 and $A+I$=$\begin{equation*} \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \end{equation*}$, where $I$ is the identity matrix of order 3×3.
If $det ((a + 1)adj((a–1)A))$ is $2^m3^n$, $m, n \in {0,1,2,…..20}$, then $m + n$ is equal to :
- 14
- 17
- 15
- 16
- Let the focal chord $PQ$ of the parabola $y^2$ = $4x$make an angle of 60° with the positive $x-$axis, where $P$ lies in the first quadrant. If the circle, whose one diameter is $PS$, $S$ being the focus of the parabola, touches the $y-$axis at the point $(0, \alpha)$, then $5\alpha^2$ is equal to :
- 15
- 25
- 30
- 20
SECTION - B
(Numerical Value Type Questions)
This section contains 05 Numerical based questions. The answer to each question is rounded off to the nearest integer.
- Let [•] denote the greatest integer function. If $\int \limits_{0}^{e^3}\left[\frac{1}{e^{x-1}}\right]dx$=$\alpha-\log_e2$, then $\alpha^3$ is equal to........
- Let $ƒ : R \to R$ be a thrice differentiable odd function satisfying $ƒ'(x) \geq 0$, $ƒ'(x)=ƒ(x)$, $ƒ(0)=0$, $ƒ'(0)$=3. Then $9ƒ(log_e3)$ is equal to _____.
- If the area of the region {$(x, y):|4-x^2|\leq y \leq x^2$, $y \leq 4, x \geq 0$} is $\left(\frac{80\sqrt{2}}{\alpha}-\beta\right)$, $\alpha, \beta \in N$, then $\alpha+\beta$ is equal to.........
- Three distinct numbers are selected randomly from the set {1,2,3,……,40}. If the probability, that the selected numbers are in an increasing G.P. is $\frac{m}{n}$, $gcd(m,n)$ = 1, then $m + n$ is equal to ____.
- The absolute difference between the squares of the radii of the two circles passing through the point (–9, 4) and touching the lines $x + y$ = 3 and $x – y$ = 3, is equal to _____.
Download as PDF
Comments
Post a Comment