Download JEE Main 2025 Question Paper (03 Apr - Shift 1) Mathematics
Important Instructions
- Section-A : Attempt all questions.
- Section-B : Attempt all questions.
- Section-A (01 – 20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.
- Section-B (01 – 05) contains 5 Numerical value based questions. The answer to each question is rounded off to the nearest integer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.
SECTION - A
(One Option Correct Type)
This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct
- Let $A$ be a matrix of order 3 x 3 and $|A|$=5. If $|2 adj(3A adj(2A)|$=$2^{\alpha}•3^{\beta}•5^{\gamma}$. $\alpha$, $\beta$, $\gamma \in N$ then $\alpha$+$\beta$+$\gamma$ is equal to
- 25
- 26
- 27
- 28
- Let a line passing through the point (4,1,0) intersect the line $L_1$:$\frac{x-1}{2}$=$\frac{y-2}{3}$=$\frac{z-3}{4}$ at the point $A(\alpha, \beta, \gamma)$ and the line $L_2$:$x-6$=$y$=$-z+4$ at the point $B(a, b, c)$. Then $\begin{equation*} \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \end{equation*}$ is equal to
- 8
- 16
- 12
- 6
- Let $\alpha$ and $\beta$ be the roots of $x^2$+$\sqrt{3}x$$-16$=0, and $\gamma$ and $\delta$ be the roots of $x^2$+$3x$$-1$=0. If $P_n$=$\alpha^n$+$\beta^n$ and $Q_n$=$\gamma^n+\delta^n$, then $\frac{P_{25}+\sqrt{3P_{24}}}{2P_{23}}$+$\frac{Q_{25}-Q_{23}}{Q_{24}}$ is equal to
- 3
- 4
- 5
- 7
- The sum of all rational terms in the expansion of $(2+\sqrt{3})^8$ is
- 16923
- 3763
- 33845
- 18817
- Let $A$ = {$-3, -2, -1, 0, 1, 2, 3$}. Let $R$ be a relation on $A$ defined by $x R y$ if and only if $0 \leq x^2+2y \leq 4$. Let $l$ be the number of elements in $R$ and $m$ be the
minimum number of elements required to be added in $R$ to make it a reflexive relation. then $l + m$ is equal to
- 19
- 20
- 17
- 18
- A line passing through the point $P(\sqrt{5}, \sqrt{5})$ intersects the ellipse $\frac{x^2}{36}+\frac{y^2}{25}$=1 at $A$ and $B$ such that $(PA)•(PB)$ is maximum. Then $5(PA^2+PB^2)$ is equal to:
- 218
- 377
- 290
- 338
- The sum 1 + 3 + 11 + 25 + 45 + 71 + .. upto 20 terms, is equal to
- 7240
- 7130
- 6982
- 8124
- If the domain of the function $f(x)$=$\log_e\left(\frac{2x-3}{5+4x}\right)$+$\sin^{-1}\left(\frac{4+3x}{2-x}\right)$ is $[\alpha, \beta)$, then $\alpha^2+4\beta$ is equal to
- 5
- 4
- 3
- 7
- If $\sum \limits_{r=1}^{9}\left(\frac{r+3}{2^r}\right)•{}^9C_r$=$\alpha\left(\frac{3}{2}\right)^9-\beta$, $\alpha, \beta \in N$, then $(\alpha+\beta)^2$ is equal to
- 27
- 9
- 81
- 18
- The number of solutions of the equation $2x+3\tan x$=$\pi$, $x \in [-2\pi, 2\pi]$$-\left\{±\frac{\pi}{2}, ±\frac{3\pi}{2}\right\}$ is
- 6
- 5
- 4
- 3
- If $y(x)$=$\begin{equation*}\begin{vmatrix} \sin x & \cos x & \sin x+\cos x +1 \\ 27 & 28 & 27 \\ 1 & 1 & 1 \end{vmatrix} \end{equation*}$, $x \in R$, then $\frac{d^2y}{dx^2}+y$ is equal to
- -1
- 28
- 27
- 1
- Let $g$ be a differentiable function such that $\int \limits_0^xg(t)dt$=$x-\int \limits_0^xtg(t)dt$, $x \geq 0$ and let $y$=$y(x)$ satisfy the differential equation $\frac{dy}{dx}-y\tan x$=$2(x+1)\sec x g(x)$, $x \in \left[0, \frac{\pi}{2}\right)$. If $y(0)$=0, then $y\left(\frac{\pi}{3}\right)$ is equal to
- $\frac{2\pi}{3\sqrt{3}}$
- $\frac{4\pi}{3}$
- $\frac{2\pi}{3}$
- $\frac{4\pi}{3\sqrt{3}}$
- A line passes through the origin and makes equal angles with the positive coordinate axes. It intersects the lines $L_1$ : $2x + y + 6$ = 0 and $L_2$ : $4x + 2y – p$ = 0, $p > 0$, at the points $A$ and $B$, respectively. If $AB$=$\frac{9}{\sqrt{2}}$ and the foot of the perpendicular from the point $A$on the line $L_2$ is $M$, then $\frac{AM}{BM}$ is equal to
- 5
- 4
- 2
- 3
- Let $z \in C$ be such that $\frac{z^2+3i}{z-2+i}$=$2+3i$. Then the
sum of all possible values of $z^2$is
- $19-2i$
- $-19-2i$
- $19+2i$
- $-19+2i$
- Let $f(x)$=$\int x^3\sqrt{3-x^2}dx$. If $5f(\sqrt{2})$=-4, then $f(1)$ is equal to
- $-\frac{2\sqrt{2}}{5}$
- $-\frac{8\sqrt{2}}{5}$
- $-\frac{4\sqrt{2}}{5}$
- $-\frac{6\sqrt{2}}{5}$
- Let $a_1$, $a_2$, $a_3$,… be a G. P. of increasing positive numbers. If $a_3a_5$ = 729 and $a_2 + a_4$=$\frac{111}{4}$, then $24(a_1 + a_2 + a_3)$ is equal to
- 131
- 130
- 129
- 128
- Let the domain of the function $ƒ(x)$ = $log_2 log_4 log_6 (3 + 4x – x^2)$ be $(a, b)$. If $\int \limits_0^{b-a}[x^2]dx$=$p-\sqrt{q}-\sqrt{r}$, $p, q, r \in N$, $gcd(p, q, r)$=1, where $[•]$ is the greatest integer function, then $p+q+r$ is equal to
- 10
- 8
- 11
- 9
- The radius of the smallest circle which touches the parabolas $y = x^2+ 2$ and $x = y^2
+ 2$ is
- $\frac{7\sqrt{2}}{2}$
- $\frac{7\sqrt{2}}{16}$
- $\frac{7\sqrt{2}}{4}$
- $\frac{7\sqrt{2}}{8}$
- Let $f(x)$=$\left\{ \begin{array}{ccc} (1+ax)^{1/x} &, x<0 \\ 1+b &, x=0 \\ \frac{(x+4)^{1/2}-2}{(x+c)^{1/3}-2} &, x>0 \end{array} \right.$ be continuous at $x = 0$. Then $e^abc$ is equal to
- 64
- 72
- 48
- 36
- Line $L_1$ passes through the point (1, 2, 3) and is parallel to $z-$axis. Line $L_2$ passes through the point $(\lambda, 5, 6)$ and is parallel to $y-$axis. Let for $\lambda = \lambda_1$, $\lambda_2$, $\lambda_2 < \lambda_1$, the shortest distance between
the two lines be 3. Then the square of the distance of the point $(\lambda_1, \lambda_2, 7)$ from the line $L_1$ is
- 40
- 32
- 25
- 37
SECTION - B
(Numerical Value Type Questions)
This section contains 05 Numerical based questions. The answer to each question is rounded off to the nearest integer.
- All five letter words are made using all the letters $A$, $B$, $C$, $D$, $E$ and arranged as in an English dictionary with serial numbers. Let the word at serial number $n$ be denoted by $W_n$. Let the probability $P(W_n)$ of choosing the word $W_n$ satisfy $P(W_n)$=$2P(W_{n-1}), n>1$. If $P(CDBEA)$=$\frac{2^{\alpha}}{2^{\beta}-1}$, $\alpha, \beta \in N$, then $\alpha +\beta$ is equal to :
- Let the product of the focal distances of the point $P(4, 2\sqrt{3})$ on the hyperbola $H: \frac{x^2}{a^2}-\frac{y^2}{b^2}$=1 be 32. Let the length of the conjugate axis of $H$ be $p$ and the length of its latus rectum be $q$. Then $p^2$ + $q^2$ is equal to ……
- Let $\vec{a}$=$\hat{i}$+$\hat{j}$+$\hat{k}$, $\vec{b}$=$3\hat{i}$+$2\hat{j}$$-\hat{k}$, $\vec{c}$=$\lambda \hat{j} +\mu \hat{k}$ and $\hat{d}$ be a unit vector such that $\vec{a}×\hat{d}$=$\vec{b}×\hat{d}$ and $\vec{c}•\hat{d}$=1. If $\vec{c}$ is perpendicular to $\vec{a}$, then $|3\lambda \hat{d}+\mu \vec{c}|^2$ is equal to........
- If the number of seven-digit numbers, such that the sum of their digits is even, is $m·n·10^n$; $m, n \in {1, 2, 3, …., 9}$, then $m + n$ is equal to
- The area of the region bounded by the curve $y$ = $max{|x|, x|x-2|}$, then $x-$axis and the lines $x = –2$ and $x = 4$ is equal to ______.
Download as PDF
Comments
Post a Comment