Download JEE Main 2023 Question Paper (24 Jan - Shift 2) Mathematics
Important Instructions
- Section-A : Attempt all questions.
- Section-B : Do any 5 questions out of 10 Questions.
- Section-A (01 – 20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.
- Section-B (1 – 10) contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. Each question carries +4 marks for correct answer and –1 mark for wrong answer
SECTION - A
(One Option Correct Type)
This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct
- Let $y=y(x)$ be the solution of the differential equation $(x^2-3y^2)dx$+$3xydy$=0, $y(1)=1$. Then $6y^2(e)$ is equal to
- $\frac{3}{2}e^2$
- $3e^2$
- $e^2$
- $2e^2$
- The number of real solutions of the equation $3\left(x^2+\frac{1}{x^2}\right)$$-2\left(x+\frac{1}{x}\right)$+5=0, is
- 4
- 0
- 2
- 3
- Let $f(x)$ be a function such that $f(x+y)$=$f(x)•f(y)$ for all $x, y\in N$. If $f(1)=3$ and $\sum \limits_{k=1}^{n}f(k)$=3279, then the value of $n$ is
- 8
- 7
- 9
- 6
- If the system of equations
$x$+$2y$+$3z$=3
$4x$+$3y-4z$=4
$8x$+$4y-\lambda z$=9+$\mu$
has infinitely many solutions, then the ordered pair $(\lambda, \mu)$ is equal to :
- $\left(-\frac{72}{5}, -\frac{21}{5}\right)$
- $\left(\frac{72}{5}, -\frac{21}{5}\right)$
- $\left(\frac{72}{5}, \frac{21}{5}\right)$
- $\left(-\frac{72}{5}, \frac{21}{5}\right)$
- The number of integers, greater than 7000 that can be formed, using the digits 3,5,6,7,8 without repetition, is
- 48
- 168
- 120
- 220
- The locus of the mid points of the chords of the circle $C_1$:$(x-4)^2$+$(y-5)^2$=4 which subtend an angle $\theta_1$ at the centre of the circle $C_1$, is a circle of radius $r_1$. If $\theta_1$=$\frac{\pi}{3}$, $\theta_3$=$\frac{2\pi}{3}$ and $r_1^2$=$r_2^2$+$r_3^2$, then $\theta_2$ is equal to.......
- $\frac{3\pi}{4}$
- $\frac{\pi}{6}$
- $\frac{\pi}{4}$
- $\frac{\pi}{2}$
- If $f(x)$=$x^3-$$x^2f'(1)$+$xf''(2)-$$f'''(3)$, $x \in R$ , then
- 2$f(0)-$$f(1)$+$f(3)$=$f(2)$
- $f(3)-f(2)$=$f(1)$
- $3f(1)$+$f(2)$=$f(3)$
- $f(1)$+$f(2)$+$f(3)$=$f(0)$
- If $(^{30}C_1)^2$+$2(^{30}C_2)^2$+$3(^{30}C_3)^2$+....+$30(^{30}C_30)^2$=$\frac{\alpha 60!}{(30!)^2}$ then $\alpha$ is equal to
- 15
- 10
- 60
- 30
- Let the plane containing the line of intersection of the planes $P1$: $x$+$(\lambda+4)y$+$z$=1 and
$P2$ : $2x$+$y$+$z$=2 pass through the points $(0,1,0)$ and $(1,0,1)$. Then the distance of the point $(2\lambda, \lambda, -\lambda)$ from the plane $P2$ is
- $2\sqrt{6}$
- $5\sqrt{6}$
- $3\sqrt{6}$
- $4\sqrt{6}$
- Let the six numbers $a_1$, $a_2$, $a_3$, $a_4$, $a_5$, $a_6$, be in A.P. and $a_1$+$a_3$=10. If the mean of these six numbers is $\frac{19}{2}$ and their variance is $\sigma^2$, then $8\sigma^2$ is equal to
- 105
- 220
- 210
- 200
- Let p and q be two statements. Then ~ (p∧(p=>~ q)) is equivalent to
- p∨(p∧q)
- p∨(p∧(~q))
- (~p)∨q
- p∨((~p)∧q)
- The set of all values of $a$ for which $\lim \limits_{x \to a}([x-5]-[2x+2])$=0, where $[\alpha]$ denotes the greatest integer less than or equal to $\alpha$ is equal to
- (-7.5, -6.5]
- [-7.5, -6.5]
- (-7.5, -6.5)
- [-7.5, -6.5)$
- If $f(x)$=$\frac{2^{2x}}{2^{2x}+2}$, $x \in R$, then $f\left(\frac{1}{2023}\right)$+$f\left(\frac{2}{2023}\right)$+...+$f\left(\frac{2022}{2023}\right)$ is equal to
- 1010
- 1011
- 2011
- 2010
- The equations of the sides $AB$ and $AC$ of a triangle $ABC$ are $(\lambda+1)x$+$\lambda y$=4 and $\lambda x$+$(1-\lambda y)y$+$\lambda$=0 respectively. Its vertex $A$ is on the $y-$axis and its orthocentre is $(1,2)$ . The length of the tangent from the point $C$ to the part of the parabola $y^2$=$6x$ in the first quadrant is :
- $2\sqrt{2}$
- 2
- $\sqrt{6}$
- 4
- The value of $\left(\frac{1+\sin\frac{2\pi}{9}+i\cos\frac{2\pi}{9}}{1+\sin\frac{2\pi}{9}-i\cos\frac{2\pi}{9}}\right)^3$ is
- $\frac{1}{2}(1-i\sqrt{3})$
- $-\frac{1}{2}(1-i\sqrt{3})$
- $\frac{1}{2}(\sqrt{3}+i)$
- $-\frac{1}{2}(\sqrt{3}-i)$
- Let $\vec{\alpha}$=$4\hat{i}$+$3\hat{j}$+$5\hat{k}$ and $\vec{\beta}$=$\hat{i}$+$2\hat{j}$$-4\hat{k}$. Let $\vec{\beta_1}$ be parallel to $\vec{\alpha}$ and $\vec{\beta_2}$ be perpendicular to $\vec{\alpha}$. If $\vec{\beta}$=$\vec{\beta_1}+\vec{\beta_2}$, then the value of $5\vec{\beta_2}•(\hat{i}+\hat{j}+\hat{k})$ is
- 7
- 9
- 6
- 11
- $\int \limits_{\frac{3\sqrt{2}}{4}}^{\frac{3\sqrt{3}}{4}}\frac{48}{\sqrt{9-4x^2}}dx$ is equal to
- $\frac{\pi}{3}$
- $2\pi$
- $\frac{\pi}{2}$
- $\frac{\pi}{6}$
- Let $A$ be a 3 x 3 matrix such that $|adj(adj(adj A))|$=$12^4$. Then $|A^{-1} adjA|$ is equal to
- $2\sqrt{3}$
- 1
- $\sqrt{6}$
- 12
- If the foot of the perpendicular drawn from $(1,9,7)$ to the line passing through the point $(3,2,1)$ and
parallel to the planes $x$+$2y$+$z$=0 and $3y-z$=3 is $(\alpha, \beta, \gamma)$, then $\alpha+\beta+\gamma$ is equal to
- 1
- 3
- 5
- -1
- The number of square matrices of order 5 with entries from the set {0,1} , such that the sum of all the elements in each row is 1 and the sum of all the elements in each column is also 1, is
- 120
- 125
- 225
- 150
SECTION - B
(Numerical Answer Type)
This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.
- Let $S$={$\theta \in [0, 2\pi):\tan(\pi \cos \theta)+\tan (\pi \sin \theta)$=0}. Then $\sum \limits_{\theta \in S} \sin^2\left(\theta +\frac{\pi}{4}\right)$ is equal to..........
- The minimum number of elements that must be added to the relation $R$= {$(a,b)$, $(b,c)$, $(b,d)$ on the set ${a,b,c,d}$ so that it is an equivalence relation, is…….
- The equations of the sides $AB$, $BC$ and $CA$ of a triangle $ABC$ are : $2x+y$=0, $x+py$=$21a$, $a\neq 0$ and $x-y$=3 respectively. Let $P(2,a)$ be the centroid of $ABC$ . Then $(BC)^2$ is equal to
- If $\frac{1^3+2^3+3^3+....\text{up to n terms}}{1•3+2•5+3•7+....\text{up to n terms}}$=$\frac{9}{5}$, , then the value of $n$ is
- Let $f$ be a differentiable function defined on $[0, \frac{\pi}{2}]$ such that $f(x)>0$ and $f(x)$+$\int \limits_{0}^{x}f(t)\sqrt{1-(\log_ef(t))^2}dt$=$e$, $\forall x \in [0, \frac{\pi}{2}]$. Then $\left(6\log_ef\left(\frac{\pi}{6}\right)\right)^2$ is equal to..........
- If the shortest between the lines
$\frac{x+\sqrt{6}}{2}$=$\frac{y-\sqrt{6}}{3}$=$\frac{z-\sqrt{6}}{4}$ and $\frac{x-\lambda}{3}$=$\frac{y-2\sqrt{6}}{4}$=$\frac{z+2\sqrt{6}}{5}$ is 6, then the square of sum of all possible values of $\lambda$ is - If the area of the region bounded by the curves $y^2-2y$=$-x$, $x+y$=0 is $A$, then $8A$ is equal to
- Three urns $A$, $B$ and $C$ contain 4 red, 6 black; 5 red, 5 black; and $\lambda$ red, 4 black balls respectively. One of the urns is selected at random and a ball is drawn. If the ball drawn is red and the probability that it is drawn from urn $C$ is 0.4 then the square of the length of the side of the largest equilateral triangle, inscribed in the parabola $\lambda^2$=$\lambda x$ with one vertex at the vertex of the parabola, is
- Let the sum of the coefficients of the first three terms in the expansion of $\left(x-\frac{3}{x^2}\right)^n$, $x \neq 0$, $n \in N$, be 376. Then the coefficient of $x^4$ is..........
- Let $\vec{a}$=$\hat{i}$+$2\hat{j}$+$\lambda \hat{k}$, $\vec{b}$=$3 \hat{i}$$-5\hat{j}$$-\lambda \hat{k}$, $\vec{a}$•$\vec{c}$=7, 2$\vec{b}$•$\vec{c}$+43=0, $\vec{a}$×$\vec{c}$=$\vec{b}$×$\vec{c}$. Then $|\vec{a}•\vec{b}|$ is equal to
Download as PDF
Comments
Post a Comment