Download JEE Main 2023 Question Paper (25 Jan - Shift 2) Mathematics
Important Instructions
- Section-A : Attempt all questions.
- Section-B : Do any 5 questions out of 10 Questions.
- Section-A (01 – 20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.
- Section-B (1 – 10) contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. Each question carries +4 marks for correct answer and –1 mark for wrong answer
SECTION - A
(One Option Correct Type)
This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct
- Let $f(x)$=$2x^n$+$\lambda$, $\lambda \in R$, $n \in N$ and $f(4)$=133, $f(5)$=255. Then the sum of all the positive integer divisors of $(f(3)-f(2))$ is
- 60
- 61
- 59
- 58
- Let $A$=$\begin{equation*} \begin{bmatrix} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{bmatrix} \end{equation*}$ and $B$=$\begin{equation*} \begin{bmatrix} 1 & -i \\ 0 & 1 \end{bmatrix} \end{equation*}$, where $i$=$\sqrt{-1}$.If $M$=$A^TBA$ , then the inverse of the matrix $AM^{2023}A^T$ is
- $\begin{equation*} \begin{bmatrix} 1 & 0 \\ -2023i & 1 \end{bmatrix} \end{equation*}$
- $\begin{equation*} \begin{bmatrix} 1 & 2023i \\ 0 & 1 \end{bmatrix} \end{equation*}$
- $\begin{equation*} \begin{bmatrix} 1 & -2023i \\ 0 & 1 \end{bmatrix} \end{equation*}$
- $\begin{equation*} \begin{bmatrix} 1 & 0 \\ 2023i & 1 \end{bmatrix} \end{equation*}$
- Let $A$, $B$, $C$ be 3 x 3 matrices such that $A$ is symmetric and $B$ and $C$ are skew-symmetric. Consider the statements
(S1) $A^{13}B^{26}-B^{26}A^{13}$ is symmetric
(S2) $A^{26}C^{13}-C^{13}A^{26}$ is symmetric- Both S1 and S2 are false
- Both S1 and S2 are true
- Only S1 is true
- Only S2 is true
- The number of numbers, strictly between 5000 and 10000 can be formed using the digits 1,3,5,7,9 without repetition, is
- 72
- 120
- 6
- 12
- Let $f: R\to R$ be a function defined by $f(x)$=$\log_{\sqrt{m}}{\sqrt{2}(\sin x - \cos x)+m - 2}$, for some $m$, such that the range of $f$ is [0, 2]. Then the value of $m$ is ........
- 3
- 5
- 2
- 4
- The number of functions $f$ : {1,2,3,4} $\to $${a \in Z, |a| \leq 8}$ satisfying $f(n)$+$\frac{1}{n}f(n+1)$=1, $\forall n \in${1,2,3} is
- 2
- 1
- 3
- 4
- Let $y=y(t)$ be a solution of the differential equation $\frac{dy}{dt}$+$\alpha y$=$\gamma e^{- \beta t}$, where $\alpha > 0$, $\beta > 0$ and $\gamma > 0$. Then $\lim \limits_{ t \to \infty} y(t)$
- is 0
- is - 1
- is 1
- does not exist
- The integral of 16 $\int \limits_1^2 \frac{dx}{x^3(x^2+2)^2}$ is equal to
- $\frac{11}{12}-$$log_e4$
- $\frac{11}{6}-$$log_e4$
- $\frac{11}{6}$+$log_e4$
- $\frac{11}{12}$+$log_e4$
- If the four points, whose position vectors are $3 \hat{i}-4 \hat{j}+2 \hat{k}$, $ \hat{i}+ \hat{j}- \hat{k}$, $-2 \hat{i}- \hat{j}+3 \hat{k}$, and $5 \hat{i}-2 \alpha \hat{j}+4 \hat{k}$ are coplanar, then $\alpha$ is equal to
- $\frac{73}{17}$
- $-\frac{107}{17}$
- $-\frac{73}{17}$
- $\frac{107}{17}$
- Let $T$ And $C$ respectively by the transverse and conjugate axes of the hyperbola $16x^2-$$y^2$+$64x$+$4y$+44=0. Then the area of the region above the parabola $x^2$=$y+4$, below
the transverse axis $T$ and on the right of the conjugate axis $C$ is :
- $4 \sqrt{6} - \frac{28}{3}$
- $4 \sqrt{6} + \frac{44}{3}$
- $4 \sqrt{6} - \frac{44}{3}$
- $4 \sqrt{6} + \frac{28}{3}$
- $\sum_{k=0}^6{ }^{51-k} C_3$ is equal to
- $^{52} C_4 - ^{45}C_4$
- $^{52} C_3 - ^{45}C_3$
- $^{51} C_3 - ^{45}C_3$
- $^{51} C_4 - ^{45}C_4$
- Let $\vec{a}$=$- \hat{i} - \hat{j} + \hat{k}$, $\vec{a}• \vec{b}$=1 and $\vec{a} × \vec{b}$=$\hat{i} - \hat{j}$. Then $\vec{a} - 6 \vec{b}$ is equal to
- $3(\hat{i} + \hat{j} + \hat{k})$
- $3(\hat{i} - \hat{j} + \hat{k})$
- $3(\hat{i} + \hat{j} - \hat{k})$
- $3(\hat{i} - \hat{j} - \hat{k})$
- Let the function $f(x)$=$2x^3$+$(2p-7)x^2$+$3(2p-9)x$$-6$ have a maxima for some value of $x < 0$ and a minima for some value of $x > 0$. Then, the set of all values of $p$ is
- $\left(-\frac{9}{2}, \frac{9}{2} \right)$
- $\left(\frac{9}{2}, \infty \right)$
- $\left(-\infty, \frac{9}{2} \right)$
- $\left(0, \frac{9}{2} \right)$
- Let $z$ be a complex number such that $\left| \frac{z-2i}{z+i} \right|$=2, $z \neq i$. Then $z$ lies on the circle of radius 2 and centre
- (0, 2)
- (2, 0)
- (0, 0)
- (0, -2)
- The equations of two sides of a variable triangle are $x$ = 0 and $y$ = 3, and its third side is a tangent
to the parabola $y^2$=$6x$ . The locus of its circumcentre is :
- $4y^2-$$18y-$$3x$+18=0
- $4y^2-$$18y$+$3x$+18=0
- $4y^2$+$18y$+$3x$+18=0
- $4y^2-$$18y-$$3x-$18=0
- If the function $f(x)$=$\left\{\begin{array}{cc}(1+|\cos x|) \frac{\lambda}{|\cos x|} & , 0 < x < \frac{\pi}{2} \\ \mu & , \quad x=\frac{\pi}{2} \\ e^{\frac{\cot 6 x}{\cot 4 x}} & , \frac{\pi}{2} < x < \pi\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$, then $9\lambda$+$6\log_e\mu$+$\mu^6-$$e^{6\lambda}$ is equal to
- 10
- 11
- $2e^4+8$
- 8
- The shortest distance between the lines $x$+1=$2y$=$-12z$ and $x$= $y$+2=$6z-$6 is
- 3
- 2
- $\frac{5}{2}$
- $\frac{3}{2}$
- Let $N$ be the sum of the numbers appeared when two fair dice are rolled and let the probability that $N-2$, $\sqrt{3N}$, $N$+2 are in geometric progression be $\frac{k}{48}$. Then the value of $k$ is
- $\frac{11}{12}-$$log_e4$
- $\frac{11}{6}-$$log_e4$
- $\frac{11}{6}$+$log_e4$
- $\frac{11}{12}$+$log_e4$
- Let $\Delta$, $\nabla \in {\bigwedge, \bigvee}$ be such that $(p\to q)$$\Delta (p \nabla q)$ is a tautology. Then
- $\Delta$=$\bigwedge$, $\nabla$=$\bigvee$
- $\Delta$=$\bigwedge$, $\nabla$=$\bigwedge$
- $\Delta$=$\bigvee$, $\nabla$=$\bigwedge$
- $\Delta$=$\bigvee$, $\nabla$=$\bigvee$
- The foot of perpendicular of the point (2, 0, 5) on the line $\frac{x+1}{2}$=$\frac{y-1}{5}$=$\frac{z+1}{-1}$ is $(\alpha, \beta, \gamma)$. Then, which of the following is NOT correct?
- $\frac{\alpha \beta}{\gamma}$=$\frac{4}{15}$
- $\frac{\alpha}{\beta}=-8$
- $\frac{\gamma}{\alpha}$=$\frac{5}{8}$
- $\frac{\beta}{\gamma}=-5$
SECTION - B
(Numerical Answer Type)
This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.
- Let $a \in R$ and let $\alpha$, $\beta$ be the roots of the equation $x^2$+$60^{\frac{1}{4}}x$+$a$=0 . If $\alpha^4$+$\beta^4$=$-30$, then the product of all possible values of $a$ is…………
- The remainder when $(2023)^{2023}$ is divisible by 35 is ...........
- 25% of the population are smokers. A smoker has 27 times more chances to develop lung cancer than a non smoker. A person is diagnosed with lung cancer and the probability that this person is a smoker is $\frac{k}{10}$. Then the value of $k$ is……..
- A triangle is formed by $X-$axis, $Y-$axis and the line $3x$+$4y$=60. Then the number of points $P(a,b)$ which lie strictly inside the triangle, where $a$ is an integer and $b$ is a multiplier of $a$, is………
- For the two positive numbers $a$, $b$, if $a$, $b$ and $\frac{1}{18}$ are in a geometric progression, while $\frac{1}{a}$,10and $\frac{1}{b}$ are in an arithmetic progression, then $16a$+$12b$ is equal to…….
- If $m$ and $n$ respectively are the numbers of positive and negative values of $\theta$ in the interval $[-\pi,\pi]$ that satisfy the equation $cos 2 \theta cos \frac{\theta}{2}$=$cos 3 \theta cos \frac{9 \theta}{2}m$ then $mn$ is equal to……..
- If $\int \limits_{\frac{1}{3}}^{3} | log_e x |dx$=$\frac{m}{n}log_e \left(\frac{n^2}{e}\right)$, where $m$, $n$ are coprime natural numbers, then $m^2+n^2-$5 is equal to ...
- Suppose Anil‘s mother wants to give 5 whole fruits to Anil from a basket of 7 red apples, 5 white apples and 8 oranges. If in the selected 5 fruits, at least 2 oranges, at least one red apple and at least one white apple must be given, then the number of ways, Anil’s mother can offer 5 fruits to Anil is……….
- If the shortest distance between the line joining the points $(1,2,3)$ and $(2,3,4)$, and the line $\frac{x-1}{2}$=$\frac{y+1}{-1}$=$\frac{z-2}{0}$ is $\alpha$, then $28 \alpha^2$ is equal to ....
- Points $P(-3,2)$, $Q(9,10 )$ and $R(\alpha , 4)$ lie on a circle $C$ with $PR$ as its diameter. The tangents to $C$ at the points $Q$ and $R$ intersect at the point $S$. If $S$ lies on the line $2x-$$ ky$= 1, then $k$ is equal to…………
Download as PDF
Comments
Post a Comment