Download JEE Main 2023 Question Paper (25 Jan - Shift 1) Mathematics
Important Instructions
- Section-A : Attempt all questions.
- Section-B : Do any 5 questions out of 10 Questions.
- Section-A (01 – 20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.
- Section-B (1 – 10) contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. Each question carries +4 marks for correct answer and –1 mark for wrong answer
SECTION - A
(One Option Correct Type)
This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct
- Let $\vec{a}$, $\vec{b}$ and $\vec{c}$ be three non zero vectors such that $\vec{b}$.$\vec{c}$=0 and $\vec{a}$×$\left(\vec{b}×\vec{c}\right)$=$\frac{\vec{b}-\vec{c}}{2}$. If $\vec{d}$ be a vector such that $\vec{b}$.$\vec{d}$=$\vec{a}$.$\vec{b}$, then $\left(\vec{a}×\vec{b}\right)$.$\left(\vec{c}×\vec{d}\right)$ is equal to
- $\frac{3}{4}$
- $\frac{1}{4}$
- $\frac{1}{2}$
- $-\frac{1}{4}$
- The mean and variance of the marks obtained by the students in a test are 10 and 4 respectively. Later, the marks of one of the students is increased from 8 to 12. If the new mean of the marks is 10.2, then their new varience is equal to
- 4.08
- 4.04
- 3.92
- 3.96
- The value of $\lim \limits_{n \to \infty}$ $\frac{1+2-3+4+5-6+...+(3n-2)+(3n-1)-3n}{\sqrt{2n^4+4n+3}-\sqrt{n^4+5n+4}}$ is :
- $\frac{3}{2}$$\left(\sqrt{2}+1\right)$
- $\frac{3}{2\sqrt{2}}$
- $\frac{\sqrt{2}+1}{2}$
- $3\left(\sqrt{2}+1\right)$
- Consider the lines $L_1$ and $L_2$ given by
$L_1$: $\frac{x-1}{2}$=$\frac{y-3}{1}$=$\frac{z-2}{2}$
$L_2$: $\frac{x-2}{1}$=$\frac{y-2}{2}$=$\frac{z-3}{3}$
A line $L_3$ having direction ratios 1, -1, -2, intersects $L_1$ and $L_2$ at the points $P$ and $Q$ respectively. Then the length of line segment $PQ$ is- 4
- 2$\sqrt{6}$
- 3 $\sqrt{2}$
- 4$\sqrt{3}$
- The vector $\vec{a}$=$-\hat{i}$+$2\hat{j}$+$\hat{k}$ is rotated through a right angle, passing through the $y-$ axis in its way and the resulting vector is $\vec{b}$. Then the projection of $3\vec{a}$+$\sqrt{2}\vec{b}$ on $\vec{c}$=$5 \hat{i}$+$4\hat{j}$+$3\hat{k}$ is:
- $2\sqrt{3}$
- $\sqrt{6}$
- $3\sqrt{2}$
- 1
- Let $f(0, 1) \to R$ be a function defined by $f(x)$=$\frac{1}{1-e^{-x}}$ and $g(x)$=$(f(-x)-f(x))$. Consider two statements
(I) $g$ is an increasing function in (0, 1)
(II)$g$ is one-one in (0, 1)
Then,- Neither (I) nor (II) is true
- Both (I) and (II) are true
- Only (II) is true
- Only (I) is true
- Let $z_1$=2+3$i$ and $z_2$=3+4$i$. The set $S$={$z \in C:$$|z-z_1|^2-$$|z-z_2|^2$=$|z_1-z_2|^2$}represents a
- straight line with the sum of its intercepts on the coordinate axes equals -18
- hyperbola with the length of the transverse axis 7
- hyperbola with eccentricity 2
- straight line with the sum of its intercepts on the coordinate axes equals 14
- Let $x$, $y$, $z$>1 and $A$=\begin{equation*} \begin{bmatrix} 1 & log_xy & log_xz \\ log_xy & 2 & log_yz \\ log_xz & log_xy & 3 \end{bmatrix} \end{equation*}. Then $|adj(adj A^2)|$ is equal to
- $4^8$
- $2^4$
- $6^4$
- $2^8$
- Let $M$ be the maximum value of the product of two positive integers when their sum is 66. Let the
sample space $S$=$\left\{x \in Z : x(66-x) \geq \frac{5}{9}M \right.$and the event $A$={$x \in S : x$ is a multiple of 3}. Then $P(A)$ is equal to
- $\frac{15}{44}$
- $\frac{1}{3}$
- $\frac{1}{5}$
- $\frac{7}{22}$
- Let $f(x)$=$\int \frac{2x}{(x^2+1)(x^2+3)}dx$. If $f(3)$=$\frac{1}{2}(log_e5-log_e6)$, then $f(4)$ is equal to
- $log_e19-log_e20$
- $\frac{1}{2}log_e19-log_e17$
- $log_e17-log_e18$
- $\frac{1}{2}log_e17-log_e19$
- Let $x$ = 2 be a local minima of the function $f(x)$=$2x^4$-18$x^2$+8$x$+12, $x \in (-4, 4)$. If $M$ is local
maximum value of the function $f$ in (-4, 4), then $M$ =
- $12\sqrt{6}-\frac{31}{2}$
- $18\sqrt{6}-\frac{31}{2}$
- $12\sqrt{6}-\frac{33}{2}$
- $18\sqrt{6}-\frac{33}{2}$
- Let $y$=$y(x)$ be the solution curve of the differential equation $\frac{dy}{dx}$=$\frac{y}{x}$(1+$xy^2$$(1+log_ex)$), $x>0$, $y(1)$=3. Then $\frac{y^2(x)}{9}$ is equal to :
- $\frac{x^2}{2x^3(2+log_ex^3)-3}$
- $\frac{x^2}{7-3x^3(2+log_ex^2)}$
- $\frac{x^2}{5-2x^3(2+log_ex^3)}$
- $\frac{x^2}{3x^3(1+log_ex^2)-2}$
- The points of intersection of the line $ax$+$ by$= 0, $(a \neq b)$ and the circle $x^2$+$y^2-$$ 2 x$= 0 are
$A(\alpha ,0)$ and $B(1, \beta)$. The image of the circle with $AB$ as a diameter in the line $x$+$ y$+ 2 =0 is :
- $x^2$+$y^2$+$3x$+$3y$+4=0
- $x^2$+$y^2$+$3x$+$5y$+8=0
- $x^2$+$y^2$$-5x$$-5y$+12=0
- $x^2$+$y^2$+$5x$+$5y$+12=0
- Let $S_1$and $S_2$
be respectively the sets of all $a \in R - {0}$ for which the system of linear equations
$ax$+$ 2ay-$$ 3az$= 1
$(2a+1) x$ +$(2a+ 3) y$+ $(a+ 1) z $=2
$(3a+ 5) x$+$( a +5) y$+$( a + 2) z $=3
has unique solution and infinitely many solutions. Then- $S_1$is an infinite set and $n (S _2)$= 2
- $S_1$=$\phi$ and $S_2$=$ R - {0}$
- $S_1$=$ R - {0}$ and $S_2$=$\phi$
- $n (S_1)$ = 2 and $S_2$ is an infinite set
- If $a_r$is the coefficient of $x^{10-r}$in the Binomial expansion of $(1+x)^{10}$, then $\sum \limits_{r=1}^{10} r^3\left(\frac{a_r}{a_{r-1}}\right)^2$ is equal to
- 5445
- 3025
- 4895
- 1210
- The distance of the point $P(4, 6, -2)$ from the line passing through the point $(-3, 2, 3)$ and parallel
to a line with direction ratios $3,3, -1$ is equal to :
- $2 \sqrt{3}$
- $3$
- $\sqrt{14}$
- $\sqrt{6}$
- The distance of the point $(6, -2 \sqrt{ 2 })$ from the common tangent $y$=$ mx$+$ c$, $m$ > 0 of the curve
$x$= $2y^2$ and $x$= 1 + $y^2$ is:
- $\frac{1}{3}$
- $5$
- $5 \sqrt{3}$
- $\frac{14}{3}$
- The minimum value of the function $f(x)$=$\int_0^2 e^{|x-t|}dt$ is
- $2(e-1)$
- $e(e-1)$
- $2e-1$
- $2$
- Let $y(x)$=$(1+x)$$(1+x^2)$$(1+x^4)$$(1+x^8)$$(1+x^{16})$ . Then $y' - y''$ at $x=- 1$ is equal to :
- 496
- 464
- 944
- 976
- The statement ($p$ ^ (~ $q$)) => ($p$ => (~ $q$)) is
- a contradiction
- equivalent to (~ $p$) v ( ~ $q$)
- equivalent to $p$ v $q$
- a tautology
SECTION - B
(Numerical Answer Type)
This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.
- If the sum of all the solutions of $\tan^{-1} \left(\frac{2x}{1-x^2}\right)$+$\cot^{-1} \left(\frac{1-x^2}{2x}\right)$=$\frac{\pi}{3}$, -1 < $x$ < 1, $x \neq 0$, is $\alpha -$$\frac{4}{\sqrt{3}}$, then $\alpha$ is equal to
- Let $S$={ 1,2,3,5,7,10,11}. The number of non-empty subsets of $S$ that have the sum of all elements a multiple of 3, is………
- Let the equation of the plane passing through the line
$x$ - $2y$ - $z$ - 5 = 0 = $x$ + $y$ + $3z$ - 5 and parallel to the line
$x$+ $y$ + $2z$ - 7 = 0 = $2x$ + $3y$ + $z$ - 2 be $ax$ + $by$ + $cz$ = 65. Then the distance of the point $(a,b,c)$ from the plane $2x$ + $2y$ - $z$ + 16 = 0 is……. - Let $A_1$ ,$A_2$ ,$A_3$ be the three $A.P.$ with the same common difference $d$ and having their first terms as
$A$,$A+1$,$A+2$, respectively. Let $a,b,c$ be the $7^{th}$, $9^{th}$, $17^{th}$ terms of $A_1$ ,$A_2$ ,$A_3$, respectively such that
$\begin{equation*} \begin{vmatrix}a & 7 & 1 \\ 2b & 17 & 1 \\ c & 17 & 1 \end{vmatrix}+70=0\end{equation*}$
If $a$ = 29, then the sum of first 20 terms of an $AP$ whose first term is $c-a-b$ and common difference is $\frac{d}{12}$, is equal to……….. - Let $S$= $\left\{ \alpha : log_2(9^{2 $\alpha -4} +13) \right.$$\left. - log_2 \left(\frac{5}{2}, 3^{2 \alpha -4} +1 \right) =2 \right\}$. Then the maximum value of $\beta$ for which the equation $x^2-$$2\left(\sum \limits_{\alpha \in S} \alpha \right)^2 x$+ $\sum \limits_{\alpha \in S} (\alpha+1)^2 \beta$ =0 has real roots, is .........
- For some $a,b,c \in N$, let $f(x)$=$ax-3$ and $g(x)$=$x^b+c$, $x \in R$. If $(fog)^{-1}(x)$=$\left(\frac{x-7}{2}\right)^{1/3}$, then $(fog)(ac)$ + $(gof) (b)$ is equal to…..
- The constant term in the expansion of $\left(2x+\frac{1}{x^7}+3x^2\right)^5$ is ........
- It the area enclosed by the parabola $P_1$ : $2y$= $5x^2$ and $P_2$ : $x^2-$$y$ + 6 = 0 is equal to the area enclosed by $P_1$ and $y$=$\alpha x$, $\alpha$ > 0, then $\alpha^3$ is equal to…..
- The vertices of a hyperbola $H$ are $(±6, 0)$ and its eccentricity is $\frac{\sqrt{5}}{2}$. Let $N$ be the normal to $H$ at a point in the first quadrant and parallel to the line $\sqrt{2}x$ + $y$ = $2 \sqrt{2}$ . If $d$ is the length of the line segment of $N$ between $H$ and the $y-$axis then $d^2$ is equal to……….
- Let $x$ and $y$ be distinct integers where $1 \leq x \leq 25$ and $1 \leq y \leq 25$. Then, the number of ways of choosing $x$ and $y$, such that $x + y$ is divisible by 5, is………..
Download as PDF
Comments
Post a Comment