Download JEE Main 2023 Question Paper (29 Jan - Shift 2) Mathematics
Important Instructions
- Section-A : Attempt all questions.
- Section-B : Do any 5 questions out of 10 Questions.
- Section-A (01 – 20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.
- Section-B (1 – 10) contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. Each question carries +4 marks for correct answer and –1 mark for wrong answer
SECTION - A
(One Option Correct Type)
This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct
- Consider a function $f:IN \to IR$, satisfying
$f(1)$+$2f(2)$+$3f(3)$+...+$xf(x)$=$x(x+1)f(x)$; $x \geq 2$ with $f(1)$=1. Then $\frac{1}{f(2022)}$+$\frac{1}{f(2028)}$ is equal to- 8200
- 8100
- 8400
- 8000
- Let $K$ be the sum of the coefficients of the odd powers of $x$ in the expansion of $(1+x)^{99}$. Let $a$ be the middle term in the expansion of $\left(2+\frac{1}{\sqrt{2}}\right)^{200}$. If $\frac{^{200}C_{99}K}{a}$=$\frac{2^lm}{n}$, where $m$ and $n$ are odd numbers, then the odd pair $(l, n)$ is equal to
- (50, 51)
- (51, 99)
- (50, 101)
- (51, 101)
- The value of the integral $\int \limits_1^2 \left( \frac{t^4+1}{t^6+1} \right)dt$ is
- $\tan^{-1} \frac{1}{2}$+$\frac{1}{3} \tan^{-1}8-$$\frac{\pi}{3}$
- $\tan^{-1} \frac{1}{2}-$$\frac{1}{3} \tan^{-1}8$+$\frac{\pi}{3}$
- $\tan^{-1} 2-$$\frac{1}{3} \tan^{-1}8$+$\frac{\pi}{3}$
- $\tan^{-1} 2$+$\frac{1}{3} \tan^{-1}8-$$\frac{\pi}{3}$
- The set of all values of $t \in R$ , for which the matrix
$\begin{equation*} \begin{bmatrix} e^t & e^{-t}(sin t-2cos t) & e^{-t}(-2sin t-cos t) \\ e^t & e^{-t}(2sin t+cos t) & e^{-t}(sin t-2cos t) \\ e^t & e^{-t}cost & e^{-t} sint \end{bmatrix} \end{equation*}$ is invertible, is- $R$
- $\left \{(2k+1) \frac{\pi}{2}, k \in Z \right \}$
- $\left \{k\pi + \frac{\pi}{4}, k \in Z \right \}$
- $\left \{ k \pi, k \in Z \right \}$
- If the tangent at a point $P$ on the parabola $y^2=3x$ is a parallel to the line $x$+$2y$=1 and the tangents at the points $Q$ and $R$ on the ellipse $\frac{x^2}{4}$+$\frac{y^2}{1}$ are perpendicular to the line $x-y$=2, then the area of the triangle $PQR$ is :
- $\frac{9}{\sqrt{5}}$
- $\frac{3}{2} \sqrt{5}$
- $3 \sqrt{5}$
- $5 \sqrt{3}$
- Let $R$ be a relation defined on $N$ as $a R b$ if $2a + 3b$ is a multiple of $5,a,b \in N$ . Then $R$ is
- not reflexive
- an equivalence relation
- symmetric but not transitive
- transitive but not symmetric
- The shortest distance between the lines $\frac{x-1}{2}$=$\frac{y+8}{-7}$=$\frac{z-4}{5}$ and $\frac{x-1}{2}$=$\frac{y-2}{1}$=$\frac{z-6}{-3}$ is
- $3 \sqrt{3}$
- $4 \sqrt{3}$
- $2 \sqrt{3}$
- $5 \sqrt{3}$
- The set of all values of $\lambda$ for which the equation $cos^2x-$$2sin^4x-$$2cos^2x$=$\lambda$ has a real solution $x$, is
- $\left[-2, -\frac{3}{2} \right]$
- $\left[-1, -\frac{1}{2} \right]$
- $\left[-2, -1 \right]$
- $\left[-\frac{3}{2}, -1\right]$
- The value of the integral $\int \limits_{\frac{1}{2}}^{2} \frac{\tan^{-1}x}{x}dx$ is equal to
- $\pi log_e 2$
- $\frac{\pi}{2} log_e 2$
- $\frac{\pi}{4} log_e 2$
- $\frac{1}{2} log_e 2$
- Let $S$={$w_1$, $w_2$, ....} be the sample space associated to a random experiment. Let $P(W_n)$=$\frac{P(W_{n-1}}{2}$, $n \geq 2$. Let $A$=${2k+3l : k, l \in N}$ and $B$=${W_n : n \in A}$. Then $P(B)$ is equal to
- $\frac{1}{32}$
- $\frac{3}{64}$
- $\frac{1}{16}$
- $\frac{3}{32}$
- Let $y$=$y(x)$ be the solution of the differential equation $xlog_ex \frac{dy}{dx}$+$y$=$x^2log_ex$, $(x>1)$. $y(2)=2$, then $y(e)$ is equal to
- $\frac{1+e^2}{4}$
- $\frac{1+e^2}{2}$
- $\frac{2+e^2}{2}$
- $\frac{4+e^2}{4}$
- Let $f$ and $g$ be twice differentiable functions on $R$ such that
$f"(x)$=$g"(x)$+$6x$
$f'(1)$=$4g'(1)-$3=9
$f'(1)$=$4g'(1)-$3=9
Then which of the following is NOT true?- There exists $x_0 \in (1, 3/2)$ such that f(x_0)$=g(x_0)$
- $g(-2)-$$f(-2)$=20
- $|f'(x)-g'(x)|$ < 6 => $-1 < x < 1$
- If $-1 < x < 2$, then $|f(x)-g'(x)|$ < 8
- The letters of the word OUGHT are written in all possible ways and these words are arranged as in a dictionary, in a series. Then the serial number of the word TOUGH is
- 86
- 89
- 79
- 84
- The statement B => ((~A) v B) is equivalent to
- B => ((~A) => B)
- A => ((~A) => B)
- A => (A <=> B)
- B => (A => B)
- The plane $2x - y + z$= 4 intersects the line segment joining the points $A (a, -2,4)$ and $B (2,b, -3)$at the point $C$ in the ratio 2 : 1 and the distance of the point $C$ from the origin is $\sqrt{5}$ . If $ab$ < 0 and
$P$ is the point $(a - b, b, 2b - a)$ then $CP^2$ is equal to
- $\frac{17}{3}$
- $\frac{97}{3}$
- $\frac{16}{3}$
- $\frac{73}{3}$
- If $\vec{a}$=$\hat{i}+2\hat{k}$, $\vec{b}$=$\hat{i}+\hat{j}+\hat{k}$, $\vec{c}$=$7\hat{i}-3\hat{j}+4\hat{k}$, $\vec{r}×\vec{b}$+$\vec{b}×\vec{c}$=$\vec{0}$ and $\vec{r}•\vec{a}$=0. Then $\vec{r}•\vec{c}$ is equal to
- 30
- 32
- 36
- 34
- If the lines $\frac{x-1}{1}$=$\frac{y-2}{2}$=$\frac{z+3}{3}$ and $\frac{x-a}{2}$=$\frac{y+2}{3}$=$\frac{z-3}{1}$ intersect at the point $P$, then the distance of the point $P$ from the plane $z=a$ is
- 16
- 22
- 10
- 28
- Let $\vec{a}$=$4\hat{i}$+$3\hat{j}$ and $\vec{b}$=$3\hat{i}-4\hat{j}+5\hat{k}$. If $\vec{c}$ is a vector such that $\vec{c}•(\vec{a}×\vec{b})$+25=0, $\vec{c}•(\hat{i}+\hat{j}+\hat{k})$=4 and projection of $\vec{c}$ on $\vec{a}$ is 1, then the projection of $c$ on $\vec{b}$ equals
- $\frac{5}{\sqrt{2}}$
- $\frac{1}{\sqrt{2}}$
- $\frac{3}{\sqrt{2}}$
- $\frac{1}{5}$
- The number of 3 digit numbers, that are divisible by either 3 or 4 but not divisible by 48, is
- 400
- 472
- 432
- 507
- The area of the region $A$={$(x, y)$ : $|cos x - sin x|$ $\leq y \leq sin x$, $0 \leq x \leq \frac{\pi}{2}$} is
- $\frac{3}{\sqrt{5}}-$$\frac{3}{\sqrt{2}}$+1
- $1-\frac{3}{\sqrt{2}}+\frac{4}{\sqrt{5}}$
- $\sqrt{5}+2\sqrt{2}-4.5$
- $\sqrt{5}-2\sqrt{2}+1$
SECTION - B
(Numerical Answer Type)
This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.
- Let $\alpha$=8-14$i$, $A$=$\left\{z \in c : \frac{\alpha z- \bar{\alpha} \bar{z}}{z^2-(\bar{z})^2-112i}=1 \right\}$ and $B$={$z \in C : |z+3i|=4$}. Then $\sum \limits_{z \in A \cap B}(Re z-Im z)$ is equal to .......
- A triangle is formed by the tangents at the point (2, 2) on the curves $y^2$=$2x$ and $x^2$+$y^2$=$4x$ and the line $x$+$y$+2=0. If $r$ is the radius of its circumcircle, then $r^2$ is equal to……..
- Let $A$ be a symmetric matrix such that $|A|$=2 and $\begin{equation*} \begin{bmatrix} 2 & 1 \\ 3 & \frac{3}{2} \end{bmatrix} A \end{equation*}$=$\begin{equation*} \begin{bmatrix} 1 & 2 \\ \alpha & \beta \end{bmatrix} \end{equation*}$. If the sum of the diagonal elements of $A$ is $s$, then $\frac{\beta s}{\alpha ^2}$ is equal to .........
- Let ${a_k}$ and ${b_k}$, $k \in N$ be two G.P.s with common ratios $r_1$ and $r_2$ respectively such that $a_1$=$b_1$=4 and $r_1$ < $r_2$. Let $c_k$=$a_k$+$b_k$, $k \in N$. If $c_2$=5 and $c_3$=$\frac{13}{4}$ then $\sum \limits_{k=1}^{\infty} c_k-(12a_6+8b_4)$ is equal to......
- The total number of 4-digit numbers whose greatest common divisor with 54 is 2, is…….
- A circle with centre (2, 3) and radius 4 intersects the line $x$+$y$=3 at the points $P$ and $Q$. If the tangents at $P$ and $Q$ intersect at the point $S(\alpha, \beta)$, then $4\alpha-7\beta$ is equal to……..
- Let $X$={11, 12, 13, ... , 40, 41} and $Y$={61, 62, 63, ... , 90, 91} be the two sets of observations. If $\bar{x}$ and $\bar{y}$ are their respective means and $\sigma^2$ is the variance of all the observations in $X \cup Y$, then $|\bar{x}+\bar{y}-\sigma^2|$ is equal to……….
- If the equation of the normal to the curve $y$=$\frac{x-a}{(x+b)(x-2)}$ at the point $(1, -3)$ is $x-4y$=13, then the value of a + b is equal to…….
- Let $\alpha_1$, $\alpha_2$, ... , $\alpha_7$ be the roots of the equation $x^7$+$3x^5$$-13x^3$$-15x$=0 and $|\alpha_1| \geq |\alpha_2|$$\geq .... \geq|\alpha_7|$. Then $\alpha_1 \alpha_2 - \alpha_3 \alpha_4$+$\alpha_5 \alpha_6$ is equal to.....
- Let $a_1$, $b_1$=1 and $a_n$=$a_{n-1}+(n-1)$, $b_n$=$b_{n-1}+a_{n-1}$, $\forall n \geq 2$. If $S$=$\sum \limits_{n=1}{10} \frac{b_n}{2^n}$ and $T$=$\sum \limits_{n=1}^{8} \frac{n}{2^{n-1}}$, these $2^7(2S-T)$ is equal to.....
Download as PDF
Comments
Post a Comment