Download JEE Main 2023 Question Paper (29 Jan - Shift 1) Mathematics
Important Instructions
- Section-A : Attempt all questions.
- Section-B : Do any 5 questions out of 10 Questions.
- Section-A (01 – 20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.
- Section-B (1 – 10) contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. Each question carries +4 marks for correct answer and –1 mark for wrong answer
SECTION - A
(One Option Correct Type)
This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct
- Let $\alpha$ and $\beta$ be real numbers. Consider a 3 x 3 matrix $A$ such that $A^2$=$3A$+$\alpha I$. If $A^4$=$21A$+$\beta I$, then
- $\alpha$=1
- $\alpha$=4
- $\beta=-8$=
- $\beta$=8
- Let the tangents at the points $A(4, -11)$ and $B(8, -5)$ on the circle $x^2$+$y^2-$$3x$+$10y-$15=0, intersect at the point $C$. Then the radius of the circle, whose centre is $C$ and the line joining $A$ and $B$ is its tangent, is equal to
- $\frac{3\sqrt{3}}{2}$
- $\frac{2\sqrt{13}}{3}$
- $\sqrt{13}$
- $2\sqrt{13}$
- Let $y$=$f(x)$ be the solution of the differential equation $y(x+1)dx-$$x^2dy$=0, $y(1)=e$. Then $\lim \limits_{x \to 0^+} f(x)$ is equal to
- $\frac{1}{e}$
- $e^2$
- $\frac{1}{e^2}$
- 0
- If the vectors $\vec{a}$=$\lambda \hat{i}$+$\mu \hat{j}$+$4 \hat{k}$, $\vec{b}$=$-2 \hat{i}$+$4 \hat{j}$$-2 \hat{k}$ and $\vec{c}$=$2 \hat{i}$+$3 \hat{j}$+$\hat{k}$ are coplanar and the projection of $\vec{a}$ on the vector $\vec{b}$ is $\sqrt{54}$ units, then the sum of all possible values of $\lambda$+$\mu$ is equal to
- 0
- 6
- 18
- 24
- Let $A$=$\left \{(x,y) \in R^2 \right.$ : $\left. y \geq 0, 2x \leq y \leq \sqrt{4-(x-1)^2} \right \}$ and $B$=$\left \{(x,y) \in R×R \right.$ : $\left. 0 \leq y \leq min \left \{2x, \sqrt{4-(x-1)^2} \right \} \right \}$. Then the ratio of the area of $A$ to the area of $B$ is
- $\frac{\pi+1}{\pi-1}$
- $\frac{\pi-1}{\pi+1}$
- $\frac{\pi}{\pi+1}$
- $\frac{\pi}{\pi-1}$
- Consider the following system of equations
$\alpha x$+$2y$+$z$=1
$2\alpha x$+$3y$+$z$=1
$3 x$+$\alpha y$+$2z$=$\beta$
for some $\alpha, \beta \in R$ . Then which of the following is NOT correct.- It has no solution for $\alpha$=3 and for all $\beta \neq$2
- It has no solution for $\alpha=-1$ and for all $\beta \in R$
- It has no solution for $\alpha \neq -1$ and $\beta$=2
- It has no solution if $\alpha=-1$ and $\beta \neq$2
- The domain of $f(x)$=$\frac{log_{x+1}(x-2)}{e^{2 log_e x}-(2x+3)}$, $x \in R$ is
- $(2, \infty)-${3}
- $R-${-1, 3}
- $(-1, \infty)-${3}
- $R-${3}
- Three rotten apples are mixed accidently with seven good apples and four apples are drawn one by one without replacement. Let the random variable $X$ denote the number of rotten apples. If $\mu$ and $\sigma^2$ represent mean and variance of $X$, respectively, then $10(\mu^2+\sigma^2)$ is equal to
- 30
- 20
- 25
- 250
- Let $f(\theta)$=3 $\left(sin^4 \left(\frac{3 \pi}{2} - \theta \right)+sin^4(3 \pi + \theta) \right)-$$2(1-sin^2 2 \theta)$ and $S$= $\left \{ \theta \in [0, \pi] : f'( \theta )=- \frac{\sqrt{3}}{2} \right \}$. If $4 \beta$= $\sum \limits_{\theta \in S} \theta$, then $f(\beta)$ is equal to
- $\frac{3}{2}$
- $\frac{5}{4}$
- $\frac{9}{8}$
- $\frac{11}{8}$
- Let $B$ and $C$ be the two points on the line $y+x$=0 such that $B$ and $C$ are symmetric with respect to the origin. Suppose $A$ is a point on $y-2x$=2 such that $\Delta ABC$ is an equilateral triangle. Then,
the area of the $\Delta ABC$ is
- $3 \sqrt{3}$
- $\frac{8}{\sqrt{3}}$
- $2 \sqrt{3}$
- $\frac{10}{\sqrt{3}}$
- Fifteen football players of a club-team are given 15 T-shirts with their names written on the backside. If the players pick up the T-shirts randomly, then the probability that at least 3 players pick the correct T-shirt is
- $\frac{5}{24}$
- $\frac{2}{15}$
- $\frac{5}{36}$
- $\frac{1}{6}$
- Let $f(x)$=$x$+$\frac{a}{\pi^2-4} sin x$ + $\frac{b}{\pi^2-4} cos x, x \in R$ be a function which satisfies $f(x)$=$x$+$\int \limits_{0}^{\pi/2} sin(x+y) f(y) dy$. Then $(a+b)$ is equal to
- $-\pi(\pi+2)$
- $-\pi(\pi-2)$
- $-2 \pi(\pi-2)$
- $-2 \pi(\pi+2)$
- A light ray emits from the origin making an angle 30° with the positive $x-$axis. After getting reflected by the line $x+y$= 1, if this ray intersects $x-$axis at $Q$, then the abscissa of $Q$ is
- $\frac{2}{(\sqrt{3}-1)}$
- $\frac{2}{(3+\sqrt{3})}$
- $\frac{\sqrt{3}}{2(\sqrt{3}+1)}$
- $\frac{2}{(3-\sqrt{3})}$
- Let $\Delta$ be the area of the region {$(x, y) \in R^2 $ : $x^2+y^2 \leq 21$, $y^2 \leq 4x$, $x \geq 1$}. Then $\frac{1}{2} \left(\Delta-21 sin^{-1} \frac{2}{\sqrt{7}} \right)$ is equal to
- $\sqrt{3}-\frac{2}{3}$
- $\sqrt{3}-\frac{4}{3}$
- $2\sqrt{3}-\frac{2}{3}$
- $2\sqrt{3}-\frac{1}{3}$
- If $p$, $q$ and $r$ are three propositions, then which of the following combination of truth values of $p$, $q$ and $r$ makes the logical expression {$(p \bigvee q) \bigwedge {((\text{~} p) \bigvee r}) \to ((\text{~ }q) \bigvee r )$ false?
- $p$=$T$, $q$=$T$, $r$=$F$
- $p$=$F$, $q$=$T$, $r$=$F$
- $p$=$T$, $q$=$F$, $r$=$T$
- $p$=$T$, $q$=$F$, $r$=$F$
- Let $f : R \to R$ be a function such that $f(x)$=$\frac{x^2+2x+1}{x^2+1}$. Then
- $f(x)$ is many-one in $(-\infty, -1)$
- $f(x)$ is many-one in $(1, \infty)$
- $f(x)$ is one-one in $(-\infty, \infty)$
- $f(x)$ is one-one in $[1, \infty)$ but not in $(-\infty, \infty)$
- Let $[x]$ denote the greatest integer $\leq x$ . Consider the function $f(x)$=max $\left \{x^2, 1+[x] \right \}$. Then the
value of the integral $\int \limits_0^2 f(x) dx$is
- $\frac{8+4 \sqrt{2}}{3}$
- $\frac{4+5 \sqrt{2}}{3}$
- $\frac{1+5 \sqrt{2}}{3}$
- $\frac{5+4 \sqrt{2}}{3}$
- Let $\lambda \neq 0$ be a real number. Let $\alpha, \beta$ be the roots of the equation $14 x^2 -$$31 x$+$3 \lambda$=0 and $\alpha, \gamma$ be the roots of the equation $35 x^2 -$$53 x$+$4 \lambda$=0. Then $\frac{3 \alpha}{\beta}$ and $\frac{4 \alpha}{\gamma}$ are the roots of the equation
- $7 x^2$+$245 x-$250=0
- $49 x^2$+$245 x$+250=0
- $7 x^2 -$$245 x$+250=0
- $49 x^2 -$$245 x$+250=0
- Let $x$=2 be a root of the equation $x^2$+$px$+$q$=0 and $f(x)$=$\left\{\begin{array}{cl}\frac{1-\cos \left(x^2-4 p x+q^2+8 q+16\right)}{(x-2 p)^4}, & x \neq 2 p \\ 0, & x=2 p\end{array}\right.$ Then $\lim \limits_{x \to 2p^+}[f(x)]$, where [•] denotes greatest integer function, is
- 0
- -1
- 2
- 1
- For two non-zero complex numbers $z_1$ and $z_2$ , if $Re(z_1z_2)$=0 and $Re(z_1+z_2)$, then which of the following are possible?
(i) $Im(z_1)$>0 and $Im(z_2)$>0
(ii) $Im(z_1)$ < 0 and $Im(z_2)$ > 0
(iii) $Im(z_1)$ > 0 and $Im(z_2)$ < 0
(iv) $Im(z_1)$ < 0 and $Im(z_2)$ < 0.
- (ii) and (iii)
- (i) and (iii)
- (ii) and (iv)
- (i) and (ii)
SECTION - B
(Numerical Answer Type)
This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.
- Five digits numbers are formed using the digits 1, 2, 3, 5, 7 with repetitions and are written in descending order with serial numbers. For example, the number 77777 has serial number 1. Then the serial number of 35337 is……
- Suppose $f$ is a function satisfying $f(x+y)$=$f(x)$+$f(y)$ for all $x, y \in N$ and $f(1)=\frac{1}{5}$. If $\sum \limits_{n=1}^m \frac{f(n)}{n(n+1)(n+2)}$=$\frac{1}{12}$, then $m$ is equal to
- Let $f : R \to R$ be a differentiable function that satisfies the relation $f(x+y)$=$f(x)$+$f(y)-$1, $\forall \text{ x, y} \in R$. If $f'(0)$=2, then $|f(-2)|$ is equal to ........
- Let the equation of the plane $P$ containing the line $x+10$=$\frac{8-y}{2}$=$z$ be $ax$+$by$+$cz$=2$(a+b)$ and the distance of the plane $P$ from the point (1, 27, 7) be $c$. Then $a^2$+$b^2$+$c^2$ is equal to ..........
- If the coefficient of $x^9$ in $\left(\alpha x^3+\frac{1}{\beta x} \right)^{11}$ and the coefficient of $x^{-9}$ in $\left(\alpha x-\frac{1}{\beta x^3} \right)^{11}$ are equal, then $(\alpha \beta)^2$ is equal to ........
- Let the co-ordinates of one vertex of $\Delta ABC$ be $A(0,2, \alpha)$ and the other two vertices lie on the line $\frac{x+ \alpha}{5}$=$\frac{y-1}{2}$=$\frac{z+4}{3}$. For $\alpha \in Z$, if the area of $\Delta ABC$ is 21 sq. units and the line segment $BC$ has length $2 \sqrt{21}$ units, then $\alpha^2$ is equal to .......
- If all the six digit numbers $x_1$$x_2$$x_3$$x_4$$x_5$$x_6$ with 0 < $x_1$ < $x_2$ < $x_3$ < $x_4$ < $x_5$ < $x_6$ are arranged in the increasing order, then the sum of the digits in the $72^{th}$ number is .......
- Let $\vec{a}$, $\vec{b}$ and $\vec{c}$ be three non-zero non-coplanar vectors. Let the position vectors of four points $A$, $B$, $C$ and $D$ be $\vec{a}-\vec{b}+\vec{c}$, $\lambda \vec{a}-3\vec{b}+4\vec{c}$, $-\vec{a}+2\vec{b}-3\vec{c}$ and $2\vec{a}-4\vec{b}+6\vec{c}$ respectively. If $\vec{AB}$, $\vec{AC}$ and $\vec{AD}$ are coplanar, then $\lambda$ is equal to .........
- Let $a_1$, $a_2$, $a_3$, ...... be a GP of increasing positive numbers. If the product of fourth and sixth terms is 9 and the sum of fifth and seventh terms is 24, then $a_1a_9$+$a_2a_4a_9$+$a_5$+$a_7$ is equal to .........
- Let the coefficients of three consecutive terms in the binomial expansion of $(1+2x)^n$ be in the ratio 2 : 5 : 8. Then the coefficient of the term, which is in the middle of these three terms, is ..........
Download as PDF
Comments
Post a Comment