Download JEE Main 2023 Question Paper (30 Jan - Shift 1) Mathematics
Important Instructions
- Section-A : Attempt all questions.
- Section-B : Do any 5 questions out of 10 Questions.
- Section-A (01 – 20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.
- Section-B (1 – 10) contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. Each question carries +4 marks for correct answer and –1 mark for wrong answer
SECTION - A
(One Option Correct Type)
This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct
- If an unbiased die, marked with - 2, - 1, 0, 1, 2, 3 on its faces, is thrown five times, then the probability that the product of the outcomes is positive, is :
- $\frac{881}{2592}$
- $\frac{27}{288}$
- $\frac{521}{2592}$
- $\frac{440}{2592}$
- The minimum number of elements that must be added to the relation $R$=${(a,b) , (b,c)}$ on the set ${a,b,c}$ so that it becomes symmetric and transitive is :
- 4
- 5
- 7
- 3
- Let a unit vector $\hat{OP}$ make angles $\alpha$, $\beta$, $\gamma$ with the positive directions of the co-ordinate axes $OX$, $OY$, $OZ$ respectively, where $\beta \in \left(0, \frac{\pi}{2}\right)$. If $\hat{OP}$ is perpendicular to the plane through points $(1, 2, 3)$, $(2, 3, 4)$ and $(1, 5, 7)$, then which of the following is true?
- $\alpha \in \left(\frac{\pi}{2}, \pi \right)$ and $\gamma \in \left(\frac{\pi}{2}, \pi \right)$
- $\alpha \in \left(0, \frac{\pi}{2} \right)$ and $\gamma \in \left(\frac{\pi}{2}, \pi \right)$
- $\alpha \in \left(\frac{\pi}{2}, \pi \right)$ and $\gamma \in \left(0, \frac{\pi}{2}\right)$
- $\alpha \in \left(0,\frac{\pi}{2}\right)$ and $\gamma \in \left(0, \frac{\pi}{2}\right)$
- If $\tan 15°$+$\frac{1}{\tan 75°}$+$\frac{1}{\tan 105°}$+$\tan 195°$=2$a$, then the value of $\left(a+\frac{1}{a}\right)$ is:
- 2
- $4-2\sqrt{3}$
- $5-\frac{3}{2}\sqrt{3}$
- 4
- Let the solution curve $y$=$y(x)$ of the differential equation $\frac{dy}{dx}-\frac{3x^5 \tan^{-1}(x^3)}{(1+x^6)^{3/2}}y$=$2x$ exp.$\left \{\frac{x^3-\tan^{-1}x^3}{\sqrt{(1+x^6)}}\right\}$ pass through the origin. Then $y(1)$ is equal to:
- exp$\left(\frac{1-\pi}{4\sqrt{2}}\right)$
- exp$\left(\frac{\pi-4}{4\sqrt{2}}\right)$
- exp$\left(\frac{4-\pi}{4\sqrt{2}}\right)$
- exp$\left(\frac{4+\pi}{4\sqrt{2}}\right)$
- Let the system of linear equations
$x$+$y$+$kz$=2 $2x$+$3y$$-z$=1 $3x$+$4y$+$2z$=$k$
have infinitely many solutions. Then the system
$(k+1)x$+$(2k-1)y$=7
$(2k+1)x$+$(k+5)y$=10
has :- unique solution satisfying $x-y 1$
- unique solution satisfying $x+y$=1
- no solution
- infinitely many solutions
- If $\vec{a}$, $\vec{b}$, $\vec{c}$ are three non-zero vectors and $\hat{n}$ is a unit vector perpendicular to $\vec{c}$ such that $\vec{a}$=$\alpha \vec{b}-\hat{n}$, $(\alpha \neq 0)$ and $\vec{b}$.$\vec{c}$=12, then $|\vec{c} × (\vec{a} × \vec{b})|$ is equal to :
- 9
- 12
- 6
- 15
- Let $y$=$x+2$, $4y$=$3x+6$ and $3y$=$4x+1$ be three tangent lines to the circle $(x-h)^2$+$(y-k)^2$=$r^2$. Then $h+k$ is equal to:
- 6
- $5\sqrt{2}$
- $5(1+\sqrt{2})$
- 5
- If the coefficient of $x^15$ in the expansion of $\left(ax^3+\frac{1}{bx^{1/3}}\right)^{15}$ is equal to the coefficient of $x^{-15}$ in the expansion of $\left(ax^{1/3}+\frac{1}{bx^{3}}\right)^{15}$, where $a$ and $b$ are positive real numbers, then for each such ordered pair $(a,b)$:
- $a=b$
- $a=3b$
- $ab$=3
- $ab$=1
- If $a_n$=$\frac{-2}{4n^2-16n+15}$, then $a_1$+$a_2$+....+$a_{25}$ is equal to :
- $\frac{49}{138}$
- $\frac{50}{141}$
- $\frac{52}{147}$
- $\frac{51}{144}$
- Among the statements :
(S1) ((p v q) => r) <=>(p=>r)
(S2) ((p v q) => r) <=>((p=>r) v (q=>r))- neither (S1) nor (S2) is a tautology
- only (S2) is a tautology
- both (S1) and (S2) are tautologies
- only (S1) is a tautology
- If $P(h,k)$ be a point on the parabola $x$=$4y^2$, which is nearest to the point $Q(0, 33)$, then the distance of $P$ from the directrix of the parabola $y^2$=$4(x+y)$ is equal to :
- 8
- 4
- 2
- 6
- If $[t]$ denotes the greatest integer $\leq t$, then the value of $\frac{3(1-e)}{e} \int \limits_1^2x^2e^{[x]+[x^2]}dx$ is :
- $e^8-e$
- $e^8-1$
- $e^7-1$
- $e^9-e$
- The number of points on the curve $y$=$54x^5-$$135x^4$$-70x^3$+$180x^2$+$210x$ at which the normal
lines are parallel to $x$+$90y$+2=0 is :
- 3
- 2
- 0
- 4
- The line $l_1$ passes through the point (2,6,2) and is perpendicular to the plane $2x$+$y$$-2z$=10.
Then the shortest distance between the line $l_1$ and the line $\frac{x+1}{2}$=$\frac{y+4}{-3}$=$\frac{z}{2}$ is :
- $\frac{19}{3}$
- 7
- 9
- $\frac{13}{3}$
- The coefficient of $x^{301}$ in $(1+x)^{500}$+$x(1+x)^{499}$+$x^2(1+x)^{498}$+...+$x^{500}$ is:
- $^{500}C_{301}$
- $^{501}C_{302}$
- $^{500}C_{300}$
- $^{501}C_{200}$
- Suppose $f:R \to R(0, \infty)$ be a differentiable function such that $5f(x+y)$=$f(x).f(y)$, $\forall x, y \in R$. If $f(3)$=320, then $\sum \limits_{n=0}^{5}f(n)$ is equal to :
- 6825
- 6525
- 6875
- 6575
- If the solution of the equation $\log_{\cos x}\cot x+4\log_{\sin x}\tan x$=1, $x \in \left(0, \frac{\pi}{2}\right)$, is $\sin^{-1}\left(\frac{\alpha+\sqrt{\beta}}{2}\right)$, where $\alpha, \beta$ are integers, then $\alpha+\beta$ is equal to :
- 4
- 3
- 6
- 5
- Let $\begin{equation*} A=\begin{bmatrix} m & n \\ p & q \end{bmatrix} \end{equation*}$, $d=|A| \neq 0$ and $|A-d(Adj A)|$=0. Then
- $1+d^2$=$m^2+q^2$
- $1+d^2$=$(m+q)^2$
- $(1+d)^2$=$m^2+q^2$
- $(1+d)^2$=$(m+q)^2$
- A straight line cuts off the intercepts $OA=a$ and $OB=b$ on the positive directions of $x-$axis and
$y-$axis respectively. If the perpendicular from origin $O$ to this line makes an angle of $\frac{\pi}{6}$with positive direction of $y-$axis and the area of $\Delta OAB$ is $\frac{98}{3}\sqrt{3}$, then $a^2-b^2$ is equal to :
- 196
- $\frac{392}{3}$
- $\frac{196}{3}$
- 98
SECTION - B
(Numerical Answer Type)
This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.
- Number of 4-digit numbers (the repeation of digits is allowed) which are made using the digits 1, 2, 3 and 5 and are divisible by 15, is equal to……..
- The mean and variance of 7 observations are 8 and 16 respectively. If one observation 14 is omitted and a and b are respectively mean and variance of remaining 6 observation, then $a+3b-5$ is equal to…….
- If the equation of the plane passing through the point (1,1, 2) and perpendicular to the line $x-3y+2z-1$=0=$4x-y+z$ is $Ax+By+Cz$=1, then 140$(C-B+A)$ is equal to ...........
- Let $f^1 (x)=\frac{3x+2}{2x+3}$, $x \in R-\left\{\frac{-3}{2}\right\}$
For $n \geq 2$, define $f^n(x)$=$f^1 o f^{n-1}(x)$.
If $f^5(x)$=$\frac{ax+b}{bx+a}$, $gcd(a, b)$=1, then $a+b$ is equal to............ - Let $\sum \limits_{n=0}^{\infty}\frac{n^3((2n!))+(2n-1)(n!)}{(n!)((2n)!)}$=$ae$+$\frac{b}{e}$+$c$, where $a, b, c \in Z$ and $e$=$\sum \limits_{n=0}^{\infty} \frac{1}{n!}$. Then $a^2-b+c$ is equal to..........
- Let $\alpha$ be the area of the larger region bounded by the curve $y^2$=$8x$ and the lines $y$=$x$ and $x$=2, which lies in the first quadrant. Then the value of $3 \alpha$ is equal to.......
- Let $z=1+i$ and $z_1$=$\frac{1+i \bar{z}}{\bar{z}(1-z)+\frac{1}{z}}$. Then $\frac{12}{\pi} arg(z_1)$ is equal to...........
- If $\lambda_1$ < $\lambda_2$ are two values of $\lambda$ such that the angle between the planes $P_1$:$\vec{r}•(3\hat{i}-5\hat{j}+\hat{k})$=7 and $P_2$:$\vec{r}•(\lambda \hat{i}+\hat{j}-3\hat{k})$=9 is $sin^{-1}\left(\frac{2\sqrt{6}}{5}\right)$, then the square of the length of the perpendicular from the point $(38 \lambda_1, 10\lambda_2, 2)$ to the plane $P_1$ is..........
- Let $S$=${1, 2, 3, 4, 5, 6}$. Then the number of one-one functions $f:S \to P(S)$, where $P(S)$ denote the power set of $S$, such that $f(n) \subset f(m)$ where $n < m$ is...........
- $\lim \limits_{x \to 0} \frac{48}{x^4} \int \limits_0^x \frac{t^3}{t^6+1}dt$ is equal to.............
Download as PDF
Comments
Post a Comment