Download JEE Main 2023 Question Paper (30 Jan - Shift 2) Mathematics
Important Instructions
- Section-A : Attempt all questions.
- Section-B : Do any 5 questions out of 10 Questions.
- Section-A (01 – 20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.
- Section-B (1 – 10) contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. Each question carries +4 marks for correct answer and –1 mark for wrong answer
SECTION - A
(One Option Correct Type)
This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct
- Let $f$, $g$ and $h$ be the real valued functions defined on $R$ as
$f(x)$=$\left\{\begin{array}{cc}\frac{x}{|x|}, & x \neq 0 \\ 1, & x =0\end{array}\right.$, $g(x)$=$\left\{\begin{array}{cc}\frac{\sin (x+1)}{(x+1)}, & x \neq -1 \\ 1, & x =-1\end{array}\right.$
and $h(x)$=$2[x]-f(x)$, where $[x]$ is the greatest integer $\leq x$. Then the value of $\lim \limits_{x \to 1}g(h(x-1))$ is- 0
- sin(1)
- -1
- 1
- Let $\vec{a}$ and $\vec{b}$ be two vectors. Let $|\vec{a}|$=1, $|\vec{b}|$=4 and $\vec{a}•\vec{b}$=2. If $\vec{c}$=$(2\vec{a}×\vec{b})-3\vec{b}$, then the value of $\vec{b}•\vec{c}$ is
- $-48$
- $-24$
- $-60$
- $-84$
- The solution of the differential equation $\frac{dy}{dx}$=$-\left(\frac{x^2+3y^2}{3x^2+y^2}\right)$, $y(1)$=0 is
- $\log_e|x+y|-$$\frac{2xy}{(x+y)^2}$=0
- $\log_e|x+y|+$$\frac{2xy}{(x+y)^2}$=0
- $\log_e|x+y|+$$\frac{xy}{(x+y)^2}$=0
- $\log_e|x+y|-$$\frac{xy}{(x+y)^2}$=0
- Let $\lambda \in R$, $\vec{a}$=$\lambda \hat{i}$+$2 \hat{j}-3\hat{k}$, $\vec{b}$=$\hat{i}$$-\lambda \hat{j}+2\hat{k}$. If $((\vec{a}+\vec{b})×(\vec{a}×\vec{b}))×(\vec{a}-\vec{b})$=$8\hat{i}-40\hat{j}-24\hat{k}$, then $|\lambda (\vec{a}+\vec{b})×(\vec{a}-\vec{b})|^2$ is equal to
- 136
- 132
- 140
- 144
- If a plane passes through the points $(-1, k, 0)$, $(2, k, -1)$, $(1, 1, 2)$ and is parallel to the line $\frac{x-1}{1}$=$\frac{2y+1}{2}$=$\frac{z+1}{-1}$, then the value of $\frac{k^2+1}{(k-1)(k-2)}$ is
- $\frac{6}{13}$
- $\frac{13}{6}$
- $\frac{5}{17}$
- $\frac{17}{5}$
- $\lim \limits_{n \to \infty} \frac{3}{n} \left\{4+\left(2+\frac{1}{n}\right)^2 \right.$+$\left. \left(2+\frac{2}{n}\right)^2+...+\left(3-\frac{1}{n}\right)^2 \right \}$ is equal to
- $\frac{19}{3}$
- 12
- 0
- 19
- Let $a_1$=1, $a_2$, $a_3$, $a_4$, ..... be consecutive natural numbers. Then $\tan^{-1} \left(\frac{1}{1+a_1a_2}\right)$+$\tan^{-1} \left(\frac{1}{1+a_2a_3}\right)$+......+$\tan^{-1} \left(\frac{1}{1+a_{2021}a_{2022}}\right)$ is equal to
- $\cot^{-1}(2022)-\frac{\pi}{4}$
- $\tan^{-1}(2022)-\frac{\pi}{4}$
- $\frac{\pi}{4}-\tan^{-1}(2022)$
- $\frac{\pi}{4}-\cot^{-1}(2022)$
- A vector $\vec{v}$ in the first octant is inclined to the $x-$ axis at 60°, to the $y-$ axis at 45° and to the $z-$ axis at an acute angle. If a plane passing through the points $(\sqrt{2}, -1, 1)$ and $(a, b, c)$ is normal to $\vec{v}$, then
- $a+b+\sqrt{2}c$=1
- $\sqrt{2}a+b+c$=1
- $a+\sqrt{2}b+c$=1
- $\sqrt{2}a-b+c$=1
- If the functions $f(x)$=$\frac{x^3}{3}$+$2bx$+$\frac{ax^2}{2}$ and $g(x)$=$\frac{x^3}{3}$+$ax$+$bx^2$, $a \neq 2b$ have a common extreme point, then $a$+$2b$+$7$ is equal to:
- 3
- 6
- $\frac{3}{2}$
- 4
- Let $q$ be the maximum integral value of $p$ in [0, 10] for which the roots of the equation $x^2-px$+$\frac{5}{4}p$=0 are rational. Then the area of the region $\left\{(x,y):0 \leq y \leq (x-q)^2, 0 \leq x \leq q \right\}$ is
- 164
- $\frac{125}{3}$
- $243$
- $25$
- Let $A$ be a point on the $x-$axis. Common tangents are drawn from $A$ to the curves $x^2$+$y^2$=8 and $y^2$=$16x$. If one of these tangents touches the two curves at $Q$ and $R$, then $(QR)^2$ is equal to
- 76
- 81
- 72
- 64
- The number of ways of selecting two numbers $a$ and $b$, $a \in {2, 4, 6, ..., 100}$ and $b \in {1, 3, 5, ... , 99}$ such that 2 is the remainder when $a+b$ is divided by 23 is
- 268
- 108
- 54
- 186
- For $\alpha, \beta \in R$, suppose the system of linear equations
$x-$$y-$$z$=5
$2x$+$2y$+$\alpha z$=8
$3x-$$y$+$4z$=$\beta$
has infinitely many solutions. Then $\alpha$ and $\beta$ are the roots of- $x^2$+$18x$+56=0
- $x^2$$-10x$+16=0
- $x^2$$-18x$+56=0
- $x^2$+$14x$+24=0
- Let $x$=$(8\sqrt{3}+13)^{13}$ and $y$=$(7\sqrt{2}+9)^{9}$. If $[t]$ denotes the greatest integer $\leq t$, then
- $[x]$ is even but $[y]$ is odd
- $[x]$ is even but $[y]$ is odd
- $[x]$ and $[y]$ are both odd
- $[x]$+$[y]$ is even
- Let $S$ be the set of all values of $a_1$for which the mean deviation about the mean of 100 consecutive positive integers $a_1$, $a_2$, $a_3$,....,$a_{100}$ is 25. Then $S$ is
- {99}
- {9}
- N
- $\phi$
- The parabolas: $ax^2$+$2bx$+$cy$=0 and $dx^2$+$2ex$+$fy$=0 intersect on the line $y$=1. If $a$, $b$, $c$, $d$, $e$, $f$ are positive real numbers and $a$, $b$, $c$ are in G.P., then
- $\frac{d}{a}$, $\frac{e}{b}, $\frac{f}{c}$ are in G.P.
- $d$, $e$, $f$ are in G.P.
- $d$, $e$, $f$ are in A.P.
- $\frac{d}{a}$, $\frac{e}{b}, $\frac{f}{c}$ are in A.P.
- If $P$ is a 3 x 3 real matrix such that $P^T$=$aP$+$(a-1)l$, where $a$>1, then
- $|Adj P|$>1
- $P$ is a singular matrix
- $|Adj P|$=$\frac{1}{2}$
- $|Adj P|$=1
- The range of the function $f(x)$=$\sqrt{3-x}$+$\sqrt{2+x}$ is:
- $[\sqrt{5}, \sqrt{10}]$
- $[\sqrt{5}, \sqrt{13}]$
- $[2\sqrt{2}, \sqrt{11}]$
- $[\sqrt{2}, \sqrt{7}]$
- Consider the following statements :
P: I have fever
Q: I will not take medicine
R: I will take rest
The statement “If I have fever, then I will take medicine and I will take rest” is equivalent to :- (P∨Q)∧((~ P)∨R)
- ((~ P)∨~ Q)∧((~ P)∨R)
- ((~ P)∨~ Q)∧((~ P)∨~ R)
- (P∨~ Q)∧(P∨~ R)
- Let $a$, $b$, $c$ > 1, $a^3$, $b^3$ and $c^3$ be in A.P., and $\log_ab$, $\log_ca$ and $\log_bc$ be in G.P. If the sum of first 20 terms of an A.P., whose first term is $\frac{a+4b+c}{3}$ and the common difference is $\frac{a-8b+c}{10}$ is -444, then $abc$ is equal to:
- 343
- 216
- $\frac{125}{8}$
- $\frac{343}{8}$
SECTION - B
(Numerical Answer Type)
This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.
- If the value of the real number $a$ > 0 for which $x^2-5ax$+1=0 and $x^2-ax-5$ have a common real root is $\frac{3}{\sqrt{2\beta}}$ then the $\beta$ is equal to .......
- The number of seven digits odd numbers, that can be formed using all the seven digits 1, 2, 2, 2, 3, 3, 5 is…………
- Let A be the area of the region {$(x, y):y \geq x^2$, $y \geq (1-x)^2$, $y \leq 2x(1-x)$}. Then 540 A is equal to…….
- A bag contains six balls of different colours. Two balls are drawn in succession with replacement. The probability that both the balls are of the same colour is $p$. Next four balls are drawn in succession with replacement and the probability that exactly three balls are of the same colour is $q$. If $p : q$=$ m : n $, where $m$ and $n$ are coprime, then $m+n$ is equal to……..
- If $\int \sqrt{sec 2x-1}dx$=$\alpha \log_e \left|\cos 2x+\beta+\sqrt{\cos2x\left(1+\cos \frac{1}{\beta}x\right)}\right|$+constant, then $\beta-\alpha$ is equal to ..........
- Let a line $L$ passes through the point $P(2, 3, 1)$ and be parallel to the line $x+3y-2z-$2=0=$x-y$+$2z$. If the distance of $L$ from the point $(5, 3, 8)$ is $\alpha$, then $3 \alpha^2$ is equal to.........
- Let A={1, 2, 3, 5, 8, 9}. Then the number of possible functions $f : A \to A$ such that $f(m•n)$=$f(m)$•$f(n)$ for every $m, n \in A$ with $m•n \in A$ is equal to………….
- $50^{th}$ root of a number $x$ is 12 and $50^{th}$ root of another number $y$ is 18. Then the remainder obtained on dividing $(x+y)$ by 25 is……..
- Let $P(a_1 ,b_1)$ and $Q(a_2 ,b_2)$ be two distinct points on a circle with center $C(\sqrt{2}, \sqrt{3})$. Let $O$ be the origin and $OC$ be perpendicular to both $CP$ and $CQ$. If the area of the triangle $OCP$ is $\frac{\sqrt{35}}{2}$, then $a_1^2$+$a_2^2$+$b_1^2$+$b_2^2$ is equal to...........
- The $8^{th}$ common terms of the series
$S_1$:3+7+11+15+19+......., $S_2$:1+6+11+16+21+.......
is..............
Download as PDF
Comments
Post a Comment