Download JEE Main 2024 Question Paper (04 Apr - Shift 2) Mathematics
Important Instructions
- Section-A : Attempt all questions.
- Section-B : Do any 5 questions out of 10 Questions.
- Section-A (01 – 20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.
- Section-B (1 – 10) contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. Each question carries +4 marks for correct answer and –1 mark for wrong answer
SECTION - A
(One Option Correct Type)
This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct
- If the function $f(x)$=$\left\{\begin{array}{cc}
\frac{72^x-9^x-8^x+1}{\sqrt{2}-\sqrt{1+\cos x}} & , x \neq 0 \\
a \log_e 2\log_e3 &, x = 0,
\end{array}\right.$ is continuous at $x$ = 0, then the value of $a^2$ is equal to
- 968
- 1152
- 746
- 1250
- If $\lambda$ > 0, let $\theta$ be the angle between the vectors $\vec{a}$=$\hat{i}$+$\lambda \hat{j}$$-3\hat{k}$ and $\vec{b}$=$3 \hat{i}$$-\hat{j}$+$2 \hat{k}$. If the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are mutually perpendicular, thenthe value of $(14 cos \theta)^2$is equal to
- 25
- 20
- 50
- 40
- Let $C$ be a circle with radius 10
units and centreat the origin. Let the line $x + y$ = 2 intersects thecircle $C$ at the points $P$ and $Q$. Let $MN$ be a chord of $C$ of length 2 unit and slope –1. Then, a distance (in units) between the chord $PQ$ and the chord $MN$
is
- $2-\sqrt{3}$
- $3-\sqrt{2}$
- $\sqrt{2}-1$
- $\sqrt{2}+1$
- Let a relation $R$ on $N×N$be defined as :
$(x_1,y_1) R(x_2,y_2)$ if and only if $x_1$ < $x_2$ or $y_1$ < $y_2$
Consider the two statements :
(I) R is reflexive but not symmetric.
(II) R is transitive
Then which one of the following is true ?- Only (II) is correct.
- Only (I) is correct.
- Both (I) and (II) are correct.
- Neither (I) nor (II) is correct.
- Let three real numbers $a$,$b$,$c$ be in arithmetic progression and $a + 1$, $b$, $c + 3$ be in geometric progression. If $a > 10$ and the arithmetic mean of $a$, $b$ and $c$ is 8, then the cube of the geometric mean of $a$, $b$ and $c$ is
- 120
- 312
- 316
- 128
- Let $A$=$\begin{equation*}\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \end{equation*}$ and $B$=1+$adj(A)$+$(adj A)^2$+...+$(adj A)^{10}$. Then, the sum of all the elements of the matrix $B$ is :
- -110
- 22
- -88
- -124
- The value of $\frac{1×2^2+2×3^2+...+100×(101)^2}{1^2×2+2^2×3+...+100^2×101}$ is
- $\frac{306}{305}$
- $\frac{305}{301}$
- $\frac{32}{31}$
- $\frac{31}{30}$
- Let $f(x)$=$\int \limits_{0}^{x} (t + \sin(1-e^t))dt$, $x \in R$. Then $\lim \limits_{x \to 0} \frac{f(x)}{x^3}$ is equal to
- $\frac{1}{6}$
- $-\frac{1}{6}$
- $-\frac{2}{3}$
- $\frac{2}{3}$
- The area (in sq. units) of the region described by {$(x,y) : y^2\leq 2x$, and $y \geq 4x –1$} is
- $\frac{11}{32}$
- $\frac{8}{9}$
- $\frac{11}{12}$
- $\frac{9}{32}$
- The area (in sq. units) of the region
$S$={$z\in C$; $|z-1| \leq 2$; $(z +\bar{z})+i(z-\bar{z}) \leq 2$; $Im (z) \geq 0$} is
- $\frac{7\pi}{3}$
- $\frac{3\pi}{2}$
- $\frac{17\pi}{8}$
- $\frac{7\pi}{4}$
- If the value of the integral $\int \limits_{-1}^{1}\frac{\cos \alpha x}{1+3^x}dx$ is $\frac{2}{\pi}$. Then, a value of $\alpha$ is
- $\frac{\pi}{6}$
- $\frac{\pi}{2}$
- $\frac{\pi}{3}$
- $\frac{\pi}{4}$
- Let $f(x)$=$3\sqrt{x-2}$+$\sqrt{4-x}$ be a real valued function. If $\alpha$ and $\beta$ are respectively the minimum and the maximum values of $f$, then $\alpha^2$+$2\beta^2$ is
equal to
- 44
- 42
- 24
- 38
- If the coefficients of $x^4$, $x^5$and $x^6$ in the expansion of $(1 + x)^n$ are in the arithmetic progression, then the maximum value of $n$ is :
- 14
- 21
- 28
- 7
- Consider a hyperbola $H$ having centre at the origin and foci and the $x-$axis. Let $C_1$ be the circle touching the hyperbola $H$ and having the centre at the origin. Let $C_2$ be the circle touching the hyperbola $H$ at its vertex and having the centre at one of its foci. If areas (in sq. units) of $C_1$ and $C_2$are 36$\pi$ and 4$\pi$, respectively, then the length (in
units) of latus rectum of $H$ is
- $\frac{28}{3}$
- $\frac{14}{3}$
- $\frac{10}{3}$
- $\frac{11}{3}$
- If the mean of the following probability distribution of a random variable $X$;
X 0 2 4 6 8 P(X) $a$ $2a$ $a+b$ $2b$ $3b$
is$\frac{46}{9}$, then the variance of the distribution is- $\frac{581}{81}$
- $\frac{566}{81}$
- $\frac{173}{27}$
- $\frac{151}{27}$
- Let $PQ$ be a chord of the parabola $y^2= 12x$ and the midpoint of $PQ$ be at $(4,1)$. Then, which of the following point lies on the line passing through the points $P$ and $Q$ ?
- (3, -3)
- $\left(\frac{3}{2}, -16\right)$
- $(2, -9)$
- $\left(\frac{1}{2}, -20\right)$
- Given the inverse trigonometric function assumes principal values only. Let $x$, $y$ be any two real numbers in [–1,1] such that
$cos^{–1}x – sin^{–1}y$ = $\alpha$,$-\frac{\pi}{2} \leq \alpha \leq \pi$. Then, the minimum value of $x^2+ y^2$ + $2xy sin \alpha$ is
- -1
- 0
- $\frac{-1}{2}$
- $\frac{1}{2}$
- Let $y$ = $y(x)$ be the solution of the differential equation $(x^2 + 4)^2dy$ + $(2x^3y + 8xy – 2)dx$ = 0. If $y(0)$ = 0, then $y(2)$ is equal to
- $\frac{\pi}{8}$
- $\frac{\pi}{16}$
- $2 \pi$
- $\frac{\pi}{32}$
- Let $\vec{a}$ = $\hat{i}$+$\hat{j}$+$\hat{k}$, $\vec{b}$=$2\hat{i}$+$4\hat{j}$$-5\hat{k}$ and $\vec{c}$=$x \hat{i}$+$2\hat{j}$+$3\hat{k}$, $x \in R$. If $\vec{d}$ is the unit vector in the direction of $\vec{b}+\vec{c}$ such that $\vec{a}•\vec{d}$=1, then $(\vec{a}×\vec{b})•\vec{c}$ is equal to
- 9
- 6
- 3
- 11
- Let $P$ the point of intersection of the lines $\frac{x-2}{1}$=$\frac{y-4}{5}$=$\frac{z-2}{1}$ and $\frac{x-3}{2}$=$\frac{y-2}{3}$=$\frac{z-3}{2}$. Then, the shortest distance of $P$ from the line $4x$ = $2y$ = $z$ is
- $\frac{5\sqrt{14}}{7}$
- $\frac{\sqrt{14}}{7}$
- $\frac{3\sqrt{14}}{7}$
- $\frac{6\sqrt{14}}{7}$
SECTION - B
(Numerical Answer Type)
This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.
- Let $S$ = {$sin^2 2\theta$ : ($sin^4\theta$ + $cos^4\theta$)$x^2$ + $(sin2 \theta)x$ + $(sin^6\theta + cos^6\theta)$ = 0 has real roots}. If $\alpha$ and $\beta$ be the smallest and largest elements of the set $S$, respectively, then $3((\alpha – 2)^2$ + $(\beta – 1)^2)$ equals…..
- If $\int cosec ^5 x dx$=$\alpha \cot x cosec x$$\left(cosec^2 x+\frac{3}{2}\right)$+$\beta \log_e\left|\tan \frac{x}{2}\right|$+C where $\alpha, \beta \in R$ and C is constant of integration, then the value of $8(\alpha + \beta)$ equals …..
- Let $f : R \to R$ be a thrice differentiable function such that $f(0)$ = 0, $f(1)$ = 1, $f(2)$ = –1, $f(3)$ = 2 and $f(4)$ = –2. Then, the minimum number of zeros of $(3f^{,} f^{,,} + ff^{,,,}) (x)$ is …..
- Consider the function $f: R \to R$ defined by $f(x)$=$\frac{2x}{\sqrt{1+9x^2}}$. If the composition of $\mathrm{f}, \underbrace{(\mathrm{fofofo} \mathrm{f} \text { of })}_{10 \text { times }}(\mathrm{x})$=$\frac{2^{10}x}{\sqrt{1+9\alpha x^2}}$, then value of $\sqrt{3 \alpha +1}$ is equal to.........
- Let $A$ be a 2 × 2 symmetric matrix such that $\begin{equation*}A \begin{bmatrix} 1 \\ 1 \end{bmatrix}=\begin{bmatrix} 3 \\ 7 \end{bmatrix}\end{equation*}$ and the determinant of $A$ be 1. If $A^{–1}$ = $\alpha A$ + $\beta I$, where $I$ is an identity matrix of order 2 × 2, then $\alpha$ + $\beta$ equals …..
- There are 4 men and 5 women in Group A, and 5 men and 4 women in Group B. If 4 persons are selected from each group, then the number of ways of selecting 4 men and 4 women is …..
- In a tournament, a team plays 10 matches with probabilities of winning and losing each match as $\frac{1}{3}$ and $\frac{2}{3}$ respectively. Let $x$ be the number of matches that the team wins, and y be the number of matches that team loses. If the probability $P(|x – y| < 2)$ is $p$, then $3^9p$ equals……
- Consider a triangle $ABC$ having the vertices $A(1,2)$, $B(\alpha, \beta)$ and $C(\gamma, \delta)$ and angles $\angle{ABC}$=$\frac{\pi}{6}$and $\angle{BAC}$=$\frac{2\pi}{3}$. If the points $B$ and $C$ lie on the line $y$ = $x + 4$, then $\alpha^2$ + $\gamma^2$ is equal to …..
- Consider a line $L$ passing through the points $P(1,2,1)$ and $Q(2,1,–1)$. If the mirror image of the point $A(2,2,2)$ in the line $L$ is $(\alpha, \beta, \gamma)$, then $\alpha$ + $\beta$ + $6\gamma$ is equal to …..
- Let $y = y(x)$ be the solution of the differentialequation $(x + y + 2)^2 dx$ = $dy$, $y(0)$ = –2. Let the maximum and minimum values of the function $y = y(x)$ in $\left[0, \frac{\pi}{3}\right]$ be $\alpha$ and $\beta$ respectively. If $(3\alpha+\pi)^2$+$\beta^2$=$\gamma$+$\delta \sqrt{3}$, $\gamma$, $\delta in Z$, then $\gamma+\delta$ equals.......
Download as PDF
Comments
Post a Comment