Download JEE Main 2024 Question Paper (08 Apr - Shift 1) Mathematics
Important Instructions
- Section-A : Attempt all questions.
- Section-B : Do any 5 questions out of 10 Questions.
- Section-A (01 – 20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.
- Section-B (1 – 10) contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. Each question carries +4 marks for correct answer and –1 mark for wrong answer
SECTION - A
(One Option Correct Type)
This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct
- The value of $k \in N$ for which the integral $I_n$=$\int \limits_{0}^{1}(1-x^k)^ndx$, $n \in N$, satisfies 147 $I_{20}$=148$I_{21}$ is:
- 10
- 8
- 14
- 7
- The sum of all the solutions of the equation $(8)^{2x}$– $16•(8)^x$+ 48 = 0 is :
- $1+\log_6(8)$
- $\log_8(6)$
- $1+\log_8(6)$
- $\log_8(4)$
- Let the circles $C_1$ : $(x – \alpha)^2$
+ $(y – \beta)^2$=$r_1^2$ and $C_2$ : $(x – 8)^2$+$\left(y-\frac{15}{2}\right)^2$=$r_2^2$ touch each otherexternally at the point (6, 6). If the point (6, 6) divides the line segment joining the centres of the circles $C_1$ and $C_2$ internally in the ratio 2 : 1, then $(\alpha + \beta)$ + 4$(r_1^2+r_2^2)$ equals
- 110
- 130
- 125
- 145
- Let $P(x, y, z)$ be a point in the first octant, whose projection in the xy-plane is the point $Q$. Let $OP$ = $\gamma$; the angle between $OQ$ and the positive $x-$axis be $\theta$; and the angle between $OP$ and the
positive $z-$axis be $\phi$, where $O$ is the origin. Then the distance of $P$ from the $x-$axis is :
- $\gamma \sqrt{1-\sin^2\phi \cos^2\theta}$
- $\gamma \sqrt{1+\cos^2\theta \sin^2\phi}$
- $\gamma \sqrt{1-\sin^2\theta \cos^2\phi}$
- $\gamma \sqrt{1+\cos^2\phi \sin^2\theta}$
- The number of critical points of the function $f(x)$ = $(x – 2)^{2/3} (2x + 1)$ is :
- 2
- 0
- 1
- 3
- Let $f(x)$ be a positive function such that the area bounded by $y = f(x)$, $y$ = 0 from $x$ = 0 to $x = a$ > 0 is $e^{–a}$+ $4a^2$ + $a – 1$. Then the differential equation, whose general solution is $y = c_1f(x)$ + $c_2$, where $c_1$ and $c_2$ are arbitrary constants, is :
- $8(e^x-1)\frac{d^2y}{dx^2}$+$\frac{dy}{dx}$=0
- $8(e^x+1)\frac{d^2y}{dx^2}$$-\frac{dy}{dx}$=0
- $8(e^x+1)\frac{d^2y}{dx^2}$+$\frac{dy}{dx}$=0
- $8(e^x-1)\frac{d^2y}{dx^2}$$-\frac{dy}{dx}$=0
- Let $f(x)$ = $4\cos^3x$ + $3 \sqrt{3}
\cos^2 x$ – 10. The number of points of local maxima of $f$ in interval $(0, 2\pi)$ is:
- 1
- 2
- 3
- 4
- Let $\begin{equation*}A=\begin{bmatrix}2 & a & 0\\1 & 3 & 1\\ 0 & 5 & b\end{bmatrix}\end{equation*}$. If $A^3$=$4A^2-A-21I$, where
$I$ is the identity matrix of order 3 × 3, then $2a + 3b$ is equal to :
- -10
- -13
- -9
- -12
- If the shortest distance between the lines
$L_1$:$\vec{r}$=$(2+\lambda)\hat{i}$+$(1-3\lambda)\hat{j}$+$(3+4\lambda)\hat{k}$, $\lambda \in R$
$L_2$:$\vec{r}$=$2(1+\mu)\hat{i}$+$3(1+\mu)\hat{j}$+$(5+\mu)\hat{k}$, $\mu \in R$
is $\frac{m}{\sqrt{n}}$, where $gcd (m, n)$ = 1, then the value of $m + n$ equals.- 384
- 387
- 377
- 390
- Let the sum of two positive integers be 24. If the probability, that their product is not less than $\frac{3}{4}$ times their greatest positive product, is $\frac{m}{n}$, where $gcd(m, n)$ = 1, then $n – m$ equals :
- 9
- 11
- 8
- 10
- If $\sin x$=$-\frac{3}{5}$, where $\pi$ < $x$ < $\frac{3\pi}{2}$, then $80(\tan^2x-\cos x)$ is equal to:
- 109
- 108
- 18
- 19
- Let $I(x)$=$\int \frac{6}{\sin^2 x(1-\cot x)^2}dx$. If $I(0)$=3, then $I\left(\frac{\pi}{12}\right)$ is equal to:
- $\sqrt{3}$
- $3\sqrt{3}$
- $6\sqrt{3}$
- $2\sqrt{3}$
- The equations of two sides $AB$ and $AC$ of a triangle $ABC$ are $4x + y$ = 14 and $3x – 2y$ = 5, respectively. The point $\left(2, -\frac{4}{3}\right)$ divides the third side $BC$ internally in the ratio 2 : 1. The equation of the side $BC$ is :
- $x – 6y$ – 10 = 0
- $x – 3y$ – 6 = 0
- $x + 3y$ + 2 = 0
- $x + 6y$ + 6 = 0
- Let $[t]$ be the greatest integer less than or equal to $t$. Let $A$ be the set of al prime factors of 2310 and $f : A \to Z$ be the function $f(x)$=$\left[\log_2\left(x^2+\left[\frac{x^3}{5}\right]\right)\right]$. The number of one-to-one functions from $A$ to the
range of $f$ is :
- 20
- 120
- 25
- 24
- Let $z$ be a complex number such that $|z + 2|$ = 1 and $lm\left(\frac{z+1}{z+2}\right)$=$\frac{1}{5}$. Then the value of $|Re(\bar{z+2})|$ is:
- $\frac{\sqrt{6}{5}}$
- $\frac{1+\sqrt{6}}{5}$
- $\frac{24}{5}$
- $\frac{2\sqrt{6}}{5}$
- If the set $R$={$(a, b); a+5b$=42, $a, b \in N$} has $m$ elements and $\sum \limits_{n=1}^{m}(1+i^{n!})$=$x+iy$, where $I$ = $\sqrt{-1}$, then the value of $m + x + y$ is :
- 8
- 12
- 4
- 5
- For the function $f(x)$ = $(cosx) – x$ + 1, $x \in R$,between the following two statements
(S1) $f(x)$ = 0 for only one value of $x$ is $[0, \pi]$.
(S2) $f(x)$ is decreasing in $\left[0, \frac{pi}{2}\right]$ and increasing in $\left[\frac{\pi}{2}, \pi\right]$.- Both (S1) and (S2) are correct
- Only (S1) is correct
- Both (S1) and (S2) are incorrect
- Only (S2) is correct
- The set of all $\alpha$, for which the vector $\vec{a}$=$\alpha t\hat{i}$+$6\hat{j}$$-3\hat{k}$ and $\vec{b}$=$t\hat{i}$$-2\hat{j}$$-2\alpha t \hat{k}$ are inclined at an obtuse angle for all $t \in R$ is :
- [0, 1)
- (-2, 0]
- (-4/3, 0]
- (-4/3, 1)
- Let $y = y(x)$ be the solution of the differential equation $(1 + y^2)$$e^{\tan x}dx$ + $\cos^2x(1 + e^{2\tan x)}dy$ = 0, $y(0)$ = 1. Then $y\left(\frac{\pi}{4}\right)$ is equal to:
- $\frac{2}{e}$
- $\frac{1}{e^2}$
- $\frac{1}{e}$
- $\frac{2}{e^2}$
- Let $H$:$\frac{-x^2}{a^2}$+$\frac{y^2}{b^2}$=1 be the hyperbola, whose eccentricity is
$\sqrt{3}$and the length of the latus rectum is
$4 \sqrt{3}$. Suppose the point $(\alpha, 6)$, $\alpha$ > 0lies on $H$. If $\beta$ is the product of the focal distances of the point $(\alpha, 6)$, then $\alpha^2+\beta$ is equal to :
- 170
- 171
- 169
- 172
SECTION - B
(Numerical Answer Type)
This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.
- Let $\begin{equation*} A=\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}\end{equation*}$. If the sum of the diagonal elements of $A^{13}$ is $3^n$, then $n$ is equal to ______.
- If the orthocentre of the triangle formed by thelines $2x + 3y$ – 1 = 0, $x + 2y$ – 1 = 0 and $ax + by$ – 1 = 0, is the centroid of another triangle, whose circumecentre and orthocentre respectively are (3, 4) and (–6, –8), then the value of $|a – b|$ is _____.
- Three balls are drawn at random from a bag containing 5 blue and 4 yellow balls. Let the random variables X and Y respectively denote the number of blue and Yellow balls. If $\bar{X}$ and $\bar{Y}$are the means of X and Y respectively, then $7\bar{X}$ + 4\bar{Y}$is equal to ______.
- The number of 3-digit numbers, formed using thedigits 2, 3, 4, 5 and 7, when the repetition of digitsis not allowed, and which are not divisible by 3, isequal to ______.
- Let the positive integers be written in the form :

If the $k^{th}$ row contains exactly $k$ numbers for every natural number $k$, then the row in which the number 5310 will be, is ______. - If the range of $f(\theta)$=$\frac{\sin^4\theta+3\cos^2\theta}{\sin^4\theta+\cos^2\theta}$, $\theta \in R$ is $[\alpha, \beta]$, then the sum of the infinite G.P., whose first term is 64 and the common ratio is $\frac{\alpha}{\beta}$ is equal to...........
- Let $\alpha =\sum \limits_{r=0}^{n}(4r^2+2r+1){}^nC_r$ and $\beta$=$\left(\sum \limits_{r=0}^{n}\frac{{}^nC_r}{r+1}\right)$+$\frac{1}{n+1}$. If 140 < $\frac{2\alpha}{\beta}$ < 281, then the value of $n$ is...............
- Let $\vec{a}$=$9\hat{i}-13\hat{j}$+$25\hat{k}$, $\vec{b}$=$3\hat{i}$+$7\hat{j}$$-13\hat{k}$ and $\vec{c}$=$17\hat{i}$$-2\hat{j}$+$\hat{k}$ be three given vectors. If $\vec{r}$ is a vector such that $\vec{r}×\vec{a}$=$(\vec{b}+\vec{c})×\vec{a}$ and $\vec{r}•(\vec{b}-\vec{c})$, then $\frac{593\vec{r}+67\vec{a}|^2}{(593)^2}$ is equal to...........
- Let the area of the region enclosed by the curve $y$ = $min{\sin x, \cos x}$ and the $x-$axis between $x = –\pi$ to $x = \pi$ be $A$. Then $A^2$ is equal to _______.
- The value of $\lim \limits_{x\to 0}2\left(\frac{1-\cos x \sqrt{\cos 2x}\sqrt{3}{\cos 3x}.......\sqrt{10}{\cos 10x}}{x^2}\right)$ is..........
Download as PDF
Comments
Post a Comment